一、什麼是全局路徑規劃
全局路徑規劃是指在給定的地圖中,通過使用搜索算法和路徑規划算法,尋找從起點到目標點的最佳路徑,並將其轉換為機器人可以遵循的指令序列,使得機器人能夠在給定地圖上避開障礙物,沿最優路徑到達目標點。
全局路徑規劃通常用於自動駕駛車輛、無人機及移動機器人等領域,在實際應用中起到了重要的作用。
二、全局路徑規劃的算法
1. Dijkstra算法
Dijkstra算法是一種常見的最短路徑搜索算法,適用於無權圖或者權值都為正數的圖。它以起點為中心向外層層擴展,直到擴展到目標點位置。
def dijkstra(graph, start, end):
#初始化
inf = float('inf')
distance = {vertex: inf for vertex in graph}
path = {vertex: [] for vertex in graph}
visited = []
queue = [start]
distance[start] = 0
#搜索
while queue:
current = queue.pop(0)
visited.append(current)
if current == end:
break
for neighbor in graph[current]:
if neighbor not in visited:
new_distance = distance[current] + graph[current][neighbor]
if new_distance < distance[neighbor]:
distance[neighbor] = new_distance
path[neighbor] = path[current] + [current]
queue.append(neighbor)
return path[end] + [end]
2. A*算法
A*算法結合了Dijkstra算法和啟發式函數(Heuristic Function)的思想,在搜索過程中通過評估函數評估某個節點是否為最優解。它適用於連續空間的最短路徑規劃,具有搜索速度快、路徑優秀等優點。
def heuristic(node1, node2):
#曼哈頓距離
return abs(node1.x - node2.x) + abs(node1.y - node2.y)
def a_star(start, end):
#初始化
open_list = [start]
closed_list = []
start.g = 0
start.f = start.h = heuristic(start, end)
#搜索
while open_list:
current = min(open_list, key = lambda x:x.f)
if current == end:
path = []
while current.parent != None:
path.append(current)
current = current.parent
path.append(start)
path.reverse()
return path
open_list.remove(current)
closed_list.append(current)
for neighbor in current.adjacent:
if neighbor in closed_list:
continue
if neighbor not in open_list:
neighbor.g = current.g + heuristic(current, neighbor)
neighbor.h = heuristic(neighbor, end)
neighbor.f = neighbor.g + neighbor.h
neighbor.parent = current
open_list.append(neighbor)
else:
new_g = current.g + heuristic(current, neighbor)
if neighbor.g > new_g:
neighbor.g = new_g
neighbor.f = neighbor.g + neighbor.h
neighbor.parent = current
return None
三、實例
下面是一個簡單的例子,給定一個地圖和起點終點,使用A*算法尋找最優路徑。
class Node:
def __init__(self, value, x, y):
self.value = value
self.x = x
self.y = y
self.adjacent = []
self.parent = None
self.f = 0
self.g = 0
self.h = 0
def create_graph(grid):
height = len(grid)
width = len(grid[0])
graph = {}
for i in range(height):
for j in range(width):
node = Node(grid[i][j], i, j)
if i+1 < height and grid[i+1][j] != "#":
node.adjacent.append(Node(grid[i+1][j], i+1, j))
if j+1 < width and grid[i][j+1] != "#":
node.adjacent.append(Node(grid[i][j+1], i, j+1))
graph[(i, j)] = node
return graph
grid = [
["S", 0, 0, "#"],
[0, "#", 0, "#"],
["#", 0, 0, 0],
["#", "#", 0, "E"]
]
graph = create_graph(grid)
start = graph[(0, 0)]
end = graph[(3, 3)]
print(a_star(start, end))
四、總結
全局路徑規劃是自動駕駛車輛、無人機等移動機器人領域必備的技術之一,Dijkstra算法、A*算法是其中常用的兩種算法,它們都可以用來尋找起點到目標點的最短路徑。對於不同場景可以根據需要選擇不同的算法進行路徑規劃。
原創文章,作者:DVDOR,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/332598.html
微信掃一掃
支付寶掃一掃