RetinaNet是Focal Loss for Dense Object Detection這篇論文中提出的一種目標檢測網絡結構,該網絡結構在相同的精度情況下提高了訓練速度。RetinaNet基於Focal Loss分類器來加強正樣本和負樣本之間的區分度,同時引入了Focal Loss檢測器來提高檢測器的靈敏度。以下是RetinaNet網絡結構的詳細解析。
一、Anchor-based檢測器
RetinaNet的目標檢測器是一種Anchor-based檢測器,其中Anchor是指在輸入圖像中的一組預先定義的框(或稱錨定框),每個框都是有關尺度和長寬比的離散集合。框與像素之間的映射是通過網絡中最後一個卷積層完成的,它將卷積層的特徵圖與原始輸入圖像之間生成了一個映射。檢測器針對每個Anchor框執行了兩個任務:首先,預測所屬類別的概率值;其次,預測框向真實邊界框的偏移量。在訓練期間,對於每個Anchor框,如果預測結果與真實框匹配,則該Anchor框被視為正樣本,否則該Anchor框被視為負樣本。這種Anchor-based方法使模型可以對不同數量和尺度的物體進行識別和分割。
下面是RetinaNet的Anchor-based檢測器的代碼實現:
class RetinaNet(nn.Module): def __init__(self): super(RetinaNet, self).__init__() self.fpn = FPN() self.cls_head = ClsHead() self.reg_head = RegHead() def forward(self, x): out = self.fpn(x) cls_out = [] reg_out = [] for feature in out: cls_out.append(self.cls_head(feature)) reg_out.append(self.reg_head(feature)) return tuple(cls_out), tuple(reg_out)
二、Focal Loss分類器
Focal Loss是針對目標檢測任務的一種修改後的二分類損失函數,它通過加權函數來緩解分類器在面對大量簡單負樣本(例如背景)時的魯棒性問題。具體來說,該權重函數主要是在標準交叉熵損失中引入一個可調參數,該參數控制與正確分類相關的樣本的權重值。當$\alpha$=0.5時,該權重函數將標準交叉熵損失還原為通用的交叉熵損失。Focal Loss通過對易分類的樣本進行降權來使分類器更加關注難分類的樣本。
下面是RetinaNet考慮Focal Loss的分類器的代碼實現:
class FocalLoss(nn.Module): def __init__(self, alpha=0.25, gamma=2, reduction='mean'): super(FocalLoss, self).__init__() self.alpha = alpha self.gamma = gamma self.reduction = reduction def forward(self, cls_pred, cls_targets): pos_inds = cls_targets > 0 neg_inds = cls_targets == 0 pos_pred = cls_pred[pos_inds] neg_pred = cls_pred[neg_inds] pos_loss = -pos_pred.log() * (1 - pos_pred) ** self.gamma * self.alpha neg_loss = -neg_pred.log() * (neg_pred) ** self.gamma * (1 - self.alpha) if self.reduction == 'mean': num_pos = pos_inds.float().sum() pos_loss = pos_loss.sum() neg_loss = neg_loss.sum() loss = (pos_loss + neg_loss) / num_pos.clamp(min=1) else: loss = pos_loss.sum() + neg_loss.sum() return loss
三、Focal Loss檢測器
RetinaNet引入了一個新的檢測器,稱為Focal Loss檢測器,該檢測器與Focal Loss分類器共同作用。具體來說,RetinaNet的Focal Loss檢測器在分類時考慮了Focal Loss,這意味着該檢測器在面對難分類樣本時會更加關注,而忽略容易分類的樣本。
下面是RetinaNet的Focal Loss檢測器的代碼實現:
class FocalLossDetection(nn.Module): def __init__(self, alpha=0.25, gamma=2, reduction='mean'): super(FocalLossDetection, self).__init__() self.cls_loss = FocalLoss(alpha, gamma, reduction=reduction) self.reg_loss = nn.SmoothL1Loss(reduction=reduction) def forward(self, cls_out, reg_out, cls_targets, reg_targets): cls_losses = [] reg_losses = [] for cls_pred, reg_pred, cls_target, reg_target, in zip(cls_out, reg_out, cls_targets, reg_targets): pos_inds = cls_target > 0 num_pos = pos_inds.float().sum() cls_loss = self.cls_loss(cls_pred, cls_target) reg_loss = self.reg_loss(pos_pred, pos_target, ) cls_losses.append(cls_loss) reg_losses.append(reg_loss) cls_loss = sum(cls_losses) / len(cls_losses) reg_loss = sum(reg_losses) / len(reg_losses) loss = cls_loss + reg_loss return loss
四、RetinaNet網絡結構整合
最後,我們將RetinaNet網絡結構從頭到尾地整理一遍。整個網絡結構包括了FPN、ClsHead、RegHead、Focal Loss和Smooth L1損失。其中,FPN生成了多個特徵層,而ClsHead和RegHead分別預測類別概率和邊框偏移。Focal Loss和Smooth L1損失作為網絡的訓練損失函數。
下面是整合後的RetinaNet網絡結構代碼實現:
class FPN(nn.Module): def __init__(self): super(FPN, self).__init__() self.conv6 = nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1) self.conv7 = nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1) self.conv8 = nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1) self.conv9 = nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1) self.latent3 = nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0) self.latent4 = nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0) self.latent5 = nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0) self.pred3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.pred4 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.pred5 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) def forward(self, x): conv3, conv4, conv5, conv6, conv7, conv8, conv9 = x lat3 = self.latent3(conv3) lat4 = self.latent4(conv4) lat5 = self.latent5(conv5) p5 = self.pred5(lat5) p4 = self.pred4(lat4 + F.interpolate(p5, size=lat4.size()[-2:], mode='nearest')) p3 = self.pred3(lat3 + F.interpolate(p4, size=lat3.size()[-2:], mode='nearest')) p6 = self.conv6(conv6) p7 = self.conv7(F.relu(p6)) p8 = self.conv8(F.relu(p7)) p9 = self.conv9(F.relu(p8)) return p3, p4, p5, p6, p7, p8, p9 class ClsHead(nn.Module): def __init__(self): super(ClsHead, self).__init__() self.output = nn.Conv2d(256, 9, kernel_size=3, stride=1, padding=1) def forward(self, x): x = self.output(x) x = x.permute(0, 2, 3, 1) x = x.reshape(x.shape[0], -1, 1) return x class RegHead(nn.Module): def __init__(self): super(RegHead, self).__init__() self.output = nn.Conv2d(256, 36, kernel_size=3, stride=1, padding=1) def forward(self, x): x = self.output(x) x = x.permute(0, 2, 3, 1) x = x.reshape(x.shape[0], -1, 4) return x class RetinaNet(nn.Module): def __init__(self): super(RetinaNet, self).__init__() self.fpn = FPN() self.cls_head = ClsHead() self.reg_head = RegHead() self.focal_loss_detection = FocalLossDetection() def forward(self, x, cls_targets, reg_targets): out = self.fpn(x) cls_out = [] reg_out = [] for feature in out: cls_out.append(self.cls_head(feature)) reg_out.append(self.reg_head(feature)) loss = self.focal_loss_detection(cls_out, reg_out, cls_targets, reg_targets) return loss, cls_out, reg_out
原創文章,作者:OLFBZ,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/313384.html