javamysql悲觀鎖(mysql悲觀鎖實現)

本文目錄一覽:

mysql中的樂觀鎖和悲觀鎖怎麼用

關於mysql中的樂觀鎖和悲觀鎖面試的時候被問到的概率還是比較大的。

mysql的悲觀鎖:

其實理解起來非常簡單,當數據被外界修改持保守態度,包括自身系統當前的其他事務,以及來自外部系統的事務處理,因此,在整個數據處理過程中,將數據處於鎖定狀態。悲觀鎖的實現,往往依靠數據庫提供的鎖機制,但是也只有數據庫層提供的鎖機制才能真正保證數據訪問的排他性,否則,即使在自身系統中實現了加鎖機制,也無法保證外部系統不會修改數據。

來點實際的,當我們使用悲觀鎖的時候我們首先必須關閉mysql數據庫的自動提交屬性,因為MySQL默認使用autocommit模式,也就是說,當你執行一個更新操作後,MySQL會立刻將結果進行提交。

關閉命令為:set autocommit=0;

悲觀鎖可以使用select…for update實現,在執行的時候會鎖定數據,雖然會鎖定數據,但是不影響其他事務的普通查詢使用。此處說普通查詢就是平時我們用的:select * from table 語句。在我們使用悲觀鎖的時候事務中的語句例如:

//開始事務

begin;/begin work;/start transaction; (三選一)

//查詢信息

select * from order where id=1 for update;

//修改信息

update order set name=’names’;

//提交事務

commit;/commit work;(二選一)

此處的查詢語句for update關鍵字,在事務中只有SELECT … FOR UPDATE 或LOCK IN SHARE MODE 同一條數據時會等待其它事務結束後才執行,一般的SELECT查詢則不受影響。

執行事務時關鍵字select…for update會鎖定數據,防止其他事務更改數據。但是鎖定數據也是有規則的。

查詢條件與鎖定範圍:

1、具體的主鍵值為查詢條件

比如查詢條件為主鍵ID=1等等,如果此條數據存在,則鎖定當前行數據,如果不存在,則不鎖定。

2、不具體的主鍵值為查詢條件

比如查詢條件為主鍵ID1等等,此時會鎖定整張數據表。

3、查詢條件中無主鍵

會鎖定整張數據表。

4、如果查詢條件中使用了索引為查詢條件

明確指定索引並且查到,則鎖定整條數據。如果找不到指定索引數據,則不加鎖。

悲觀鎖的確保了數據的安全性,在數據被操作的時候鎖定數據不被訪問,但是這樣會帶來很大的性能問題。因此悲觀鎖在實際開發中使用是相對比較少的。

mysql的樂觀鎖:

相對悲觀鎖而言,樂觀鎖假設數據一般情況下不會造成衝突,所以在數據進行提交更新的時候,才會對數據的衝突與否進行檢測,如果發現衝突,則讓返回用戶錯誤的信息,讓用戶決定如何去做。

一般來說,實現樂觀鎖的方法是在數據表中增加一個version字段,每當數據更新的時候這個字段執行加1操作。這樣當數據更改的時候,另外一個事務訪問此條數據進行更改的話就會操作失敗,從而避免了並發操作錯誤。當然,還可以將version字段改為時間戳,不過原理都是一樣的。

例如有表student,字段:

id,name,version

1 a 1

當事務一進行更新操作:update student set name=’ygz’ where id = #{id} and version = #{version};

此時操作完後數據會變為id = 1,name = ygz,version = 2,當另外一個事務二同樣執行更新操作的時候,卻發現version != 1,此時事務二就會操作失敗,從而保證了數據的正確性。

悲觀鎖和樂觀鎖都是要根據具體業務來選擇使用,本文僅作簡單介紹。

Java如何實現對Mysql數據庫的行鎖

下面通過一個例子來說明

場景如下:

用戶賬戶有餘額,當發生交易時,需要實時更新餘額。這裡如果發生並發問題,那麼會造成用戶餘額和實際交易的不一致,這對公司和客戶來說都是很危險的。

那麼如何避免:

網上查了下,有以下兩種方法:

1、使用悲觀鎖

當需要變更餘額時,通過代碼在事務中對當前需要更新的記錄設置for update行鎖,然後開始正常的查詢和更新操作

這樣,其他的事務只能等待該事務完成後方可操作

當然要特別注意,如果使用了Spring的事務註解,需要配置一下:

!– (事務管理)transaction manager, use JtaTransactionManager for global tx —

bean id=”transactionManager”

class=”org.springframework.jdbc.datasource.DataSourceTransactionManager”

property name=”dataSource” ref=”dataSource” /

/bean

!– 使用annotation定義事務 —

tx:annotation-driven transaction-manager=”transactionManager” /

在指定代碼處添加事務註解

@Transactional

@Override

public boolean increaseBalanceByLock(Long userId, BigDecimal amount)

throws ValidateException {

long time = System.currentTimeMillis();

//獲取對記錄的鎖定

UserBalance balance = userBalanceDao.getLock(userId);

LOGGER.info(“[lock] start. time: {}”, time);

if (null == balance) {

throw new ValidateException(

ValidateErrorCode.ERRORCODE_BALANCE_NOTEXIST,

“user balance is not exist”);

}

boolean result = userBalanceDao.increaseBalanceByLock(balance, amount);

long timeEnd = System.currentTimeMillis();

LOGGER.info(“[lock] end. time: {}”, timeEnd);

return result;

}

MyBatis中的鎖定方式,實際測試該方法確實可以有效控制,不過在大並發量的情況下,可能會有性能問題吧

select id=”getLock” resultMap=”BaseResultMap” parameterType=”java.lang.Long”

![CDATA[

select * from user_balance where id=#{id,jdbcType=BIGINT} for update;

]]

/select

2、使用樂觀鎖

這個方法也同樣可以解決場景中描述的問題(我認為比較適合併不頻繁的操作):

設計表的時候增加一個version(版本控制字段),每次需要更新餘額的時候,先獲取對象,update的時候根據version和id為條件去更新,如果更新回來的數量為0,說明version已經變更

需要重複一次更新操作,如下:sql腳本

update user_balance set Balance = #{balance,jdbcType=DECIMAL},Version = Version+1 where Id = #{id,jdbcType=BIGINT} and Version = #{version,jdbcType=BIGINT}

這是一種不使用數據庫鎖的方法,解決方式也很巧妙。當然,在大量並發的情況下,一次扣款需要重複多次的操作才能成功,還是有不足之處的。不知道還有沒有更好的方法。

mysql怎麼設置悲觀鎖

在mysql中可以使用select…for update實現悲觀鎖。這樣那條數據就被我們鎖定了,其它的事務必須等本次事務提交之後才能執行。從而保證數據不會被其他事務更改從而導致數據的異常。但是select…for update不會阻塞select的查詢。

需要注意的是mysql在採用InnoDB時,默認為行鎖,且只有明確額指定主鍵,MySQL 才會執行行鎖,鎖住對應的那條數據,否則MySQL 將會執行表鎖(將整個數據表單給鎖住)。

mysql 核心內容-上

1、SQL語句執行流程

MySQL大體上可分為Server層和存儲引擎層兩部分。

Server層:

連接器:TCP握手後服務器來驗證登陸用戶身份,A用戶創建連接後,管理員對A用戶權限修改了也不會影響到已經創建的鏈接權限,必須重新登陸。

查詢緩存:查詢後的結果存儲位置,MySQL8.0版本以後已經取消,因為查詢緩存失效太頻繁,得不償失。

分析器:根據語法規則,判斷你輸入的這個SQL語句是否滿足MySQL語法。

優化器:多種執行策略可實現目標,系統自動選擇最優進行執行。

執行器:判斷是否有權限,將最終任務提交到存儲引擎。

存儲引擎層

負責數據的存儲和提取。其架構模式是插件式的,支持InnoDB、MyISAM、Memory等多個存儲引擎。現在最常用的存儲引擎是InnoDB,它從MySQL 5.5.5版本開始成為了默認存儲引擎(經常用的也是這個)。

SQL執行順序

2、BinLog、RedoLog、UndoLog

BinLog

BinLog是記錄所有數據庫表結構變更(例如create、alter table)以及表數據修改(insert、update、delete)的二進制日誌,主從數據庫同步用到的都是BinLog文件。BinLog日誌文件有三種模式。

STATEMENT 模式

內容:binlog 記錄可能引起數據變更的 sql 語句

優勢:該模式下,因為沒有記錄實際的數據,所以日誌量很少 IO 都消耗很低,性能是最優的

劣勢:但有些操作並不是確定的,比如 uuid() 函數會隨機產生唯一標識,當依賴 binlog 回放時,該操作生成的數據與原數據必然是不同的,此時可能造成無法預料的後果。

ROW 模式

內容:在該模式下,binlog 會記錄每次操作的源數據與修改後的目標數據,StreamSets就要求該模式。

優勢:可以絕對精準的還原,從而保證了數據的安全與可靠,並且複製和數據恢復過程可以是並發進行的

劣勢:缺點在於 binlog 體積會非常大,同時,對於修改記錄多、字段長度大的操作來說,記錄時性能消耗會很嚴重。閱讀的時候也需要特殊指令來進行讀取數據。

MIXED 模式

內容:是對上述STATEMENT 跟 ROW 兩種模式的混合使用。

細節:對於絕大部分操作,都是使用 STATEMENT 來進行 binlog 沒有記錄,只有以下操作使用 ROW 來實現:表的存儲引擎為 NDB,使用了uuid() 等不確定函數,使用了 insert delay 語句,使用了臨時表

主從同步流程:

1、主節點必須啟用二進制日誌,記錄任何修改了數據庫數據的事件。

2、從節點開啟一個線程(I/O Thread)把自己扮演成 mysql 的客戶端,通過 mysql 協議,請求主節點的二進制日誌文件中的事件 。

3、主節點啟動一個線程(dump Thread),檢查自己二進制日誌中的事件,跟對方請求的位置對比,如果不帶請求位置參數,則主節點就會從第一個日誌文件中的第一個事件一個一個發送給從節點。

4、從節點接收到主節點發送過來的數據把它放置到中繼日誌(Relay log)文件中。並記錄該次請求到主節點的具體哪一個二進制日誌文件內部的哪一個位置(主節點中的二進制文件會有多個)。

5、從節點啟動另外一個線程(sql Thread ),把 Relay log 中的事件讀取出來,並在本地再執行一次。

mysql默認的複製方式是異步的,並且複製的時候是有並行複製能力的。主庫把日誌發送給從庫後不管了,這樣會產生一個問題就是假設主庫掛了,從庫處理失敗了,這時候從庫升為主庫後,日誌就丟失了。由此產生兩個概念。

全同步複製

主庫寫入binlog後強制同步日誌到從庫,所有的從庫都執行完成後才返回給客戶端,但是很顯然這個方式的話性能會受到嚴重影響。

半同步複製

半同步複製的邏輯是這樣,從庫寫入日誌成功後返回ACK確認給主庫,主庫收到至少一個從庫的確認就認為寫操作完成。

還可以延伸到由於主從配置不一樣、主庫大事務、從庫壓力過大、網絡震蕩等造成主備延遲,如何避免這個問題?主備切換的時候用可靠性優先原則還是可用性優先原則?如何判斷主庫Crash了?互為主備的情況下如何避免主備循環複製?被刪庫跑路了如何正確恢復?( o )… 感覺越來越扯到DBA的活兒上去了。

RedoLog

可以先通過下面demo理解:

飯點記賬可以把賬單寫在賬本上也可以寫在粉板上。有人賒賬或者還賬的話,一般有兩種做法:

1、直接把賬本翻出來,把這次賒的賬加上去或者扣除掉。

2、先在粉板上記下這次的賬,等打烊以後再把賬本翻出來核算。

生意忙時選後者,因為前者太麻煩了。得在密密麻麻的記錄中找到這個人的賒賬總額信息,找到之後再拿出算盤計算,最後再將結果寫回到賬本上。

同樣在MySQL中如果每一次的更新操作都需要寫進磁盤,然後磁盤也要找到對應的那條記錄,然後再更新,整個過程IO成本、查找成本都很高。而粉板和賬本配合的整個過程就是MySQL用到的是Write-Ahead Logging 技術,它的關鍵點就是先寫日誌,再寫磁盤。此時賬本 = BinLog,粉板 = RedoLog。

1、 記錄更新時,InnoDB引擎就會先把記錄寫到RedoLog(粉板)裡面,並更新內存。同時,InnoDB引擎會在空閑時將這個操作記錄更新到磁盤裡面。

2、 如果更新太多RedoLog處理不了的時候,需先將RedoLog部分數據寫到磁盤,然後擦除RedoLog部分數據。RedoLog類似轉盤。

RedoLog有write pos 跟checkpoint

write pos :是當前記錄的位置,一邊寫一邊後移,寫到第3號文件末尾後就回到0號文件開頭。

check point:是當前要擦除的位置,也是往後推移並且循環的,擦除記錄前要把記錄更新到數據文件。

write pos和check point之間的是粉板上還空着的部分,可以用來記錄新的操作。如果write pos追上checkpoint,表示粉板滿了,這時候不能再執行新的更新,得停下來先擦掉一些記錄,把checkpoint推進一下。

有了redo log,InnoDB就可以保證即使數據庫發生異常重啟,之前提交的記錄都不會丟失,這個能力稱為crash-safe。 redolog兩階段提交:為了讓binlog跟redolog兩份日誌之間的邏輯一致。提交流程大致如下:

1 prepare階段 — 2 寫binlog — 3 commit

當在2之前崩潰時,重啟恢復後發現沒有commit,回滾。備份恢復:沒有binlog 。一致

當在3之前崩潰時,重啟恢複發現雖沒有commit,但滿足prepare和binlog完整,所以重啟後會自動commit。備份:有binlog. 一致

binlog跟redolog區別:

redo log是InnoDB引擎特有的;binlog是MySQL的Server層實現的,所有引擎都可以使用。

redo log是物理日誌,記錄的是在某個數據頁上做了什麼修改;binlog是邏輯日誌,記錄的是這個語句的原始邏輯,比如給ID=2這一行的c字段加1。

redo log是循環寫的,空間固定會用完;binlog是可以追加寫入的。追加寫是指binlog文件寫到一定大小後會切換到下一個,並不會覆蓋以前的日誌。

UndoLog

UndoLog 一般是邏輯日誌,主要分為兩種:

insert undo log

代表事務在insert新記錄時產生的undo log, 只在事務回滾時需要,並且在事務提交後可以被立即丟棄

update undo log

事務在進行update或delete時產生的undo log; 不僅在事務回滾時需要,在快照讀時也需要;所以不能隨便刪除,只有在快速讀或事務回滾不涉及該日誌時,對應的日誌才會被purge線程統一清除

3、MySQL中的索引

索引的常見模型有哈希表、有序數組和搜索樹。

哈希表:一種以KV存儲數據的結構,只適合等值查詢,不適合範圍查詢。

有序數組:只適用於靜態存儲引擎,涉及到插入的時候比較麻煩。可以參考Java中的ArrayList。

搜索樹:按照數據結構中的二叉樹來存儲數據,不過此時是N叉樹(B+樹)。廣泛應用在存儲引擎層中。

B+樹比B樹優勢在於:

B+ 樹非葉子節點存儲的只是索引,可以存儲的更多。B+樹比B樹更加矮胖,IO次數更少。

B+ 樹葉子節點前後管理,更加方便範圍查詢。同時結果都在葉子節點,查詢效率穩定。

B+樹中更有利於對數據掃描,可以避免B樹的回溯掃描。

索引的優點:

1、唯一索引可以保證每一行數據的唯一性

2、提高查詢速度

3、加速表與表的連接

4、顯著的減少查詢中分組和排序的時間

5、通過使用索引,可以在查詢的過程中,使用優化隱藏器,提高系統的性能。

索引的缺點:

1、創建跟維護都需要耗時

2、創建索引時,需要對錶加鎖,在鎖表的同時,可能會影響到其他的數據操作

3、 索引需要磁盤的空間進行存儲,磁盤佔用也很快。

4、當對表中的數據進行CRUD的時,也會觸發索引的維護,而維護索引需要時間,可能會降低數據操作性能

索引設計的原則不應該:

1、索引不是越多越好。索引太多,維護索引需要時間跟空間。

2、 頻繁更新的數據,不宜建索引。

3、數據量小的表沒必要建立索引。

應該:

1、重複率小的列建議生成索引。因為重複數據少,索引樹查詢更有效率,等價基數越大越好。

2、數據具有唯一性,建議生成唯一性索引。在數據庫的層面,保證數據正確性

3、頻繁group by、order by的列建議生成索引。可以大幅提高分組和排序效率

4、經常用於查詢條件的字段建議生成索引。通過索引查詢,速度更快

索引失效的場景

1、模糊搜索:左模糊或全模糊都會導致索引失效,比如’%a’和’%a%’。但是右模糊是可以利用索引的,比如’a%’ 。

2、隱式類型轉換:比如select * from t where name = xxx , name是字符串類型,但是沒有加引號,所以是由MySQL隱式轉換的,所以會讓索引失效 3、當語句中帶有or的時候:比如select * from t where name=‘sw’ or age=14

4、不符合聯合索引的最左前綴匹配:(A,B,C)的聯合索引,你只where了C或B或只有B,C

關於索引的知識點:

主鍵索引:主鍵索引的葉子節點存的是整行數據信息。在InnoDB里,主鍵索引也被稱為聚簇索引(clustered index)。主鍵自增是無法保證完全自增的哦,遇到唯一鍵衝突、事務回滾等都可能導致不連續。

唯一索引:以唯一列生成的索引,該列不允許有重複值,但允許有空值(NULL)

普通索引跟唯一索引查詢性能:InnoDB的數據是按數據頁為單位來讀寫的,默認每頁16KB,因此這兩種索引查詢數據性能差別微乎其微。

change buffer:普通索引用在更新過程的加速,更新的字段如果在緩存中,如果是普通索引則直接更新即可。如果是唯一索引需要將所有數據讀入內存來確保不違背唯一性,所以盡量用普通索引。

非主鍵索引:非主鍵索引的葉子節點內容是主鍵的值。在InnoDB里,非主鍵索引也被稱為二級索引(secondary index)

回表:先通過數據庫索引掃描出數據所在的行,再通過行主鍵id取出索引中未提供的數據,即基於非主鍵索引的查詢需要多掃描一棵索引樹。

覆蓋索引:如果一個索引包含(或者說覆蓋)所有需要查詢的字段的值,我們就稱之為覆蓋索引。

聯合索引:相對單列索引,組合索引是用多個列組合構建的索引,一次性最多聯合16個。

最左前綴原則:對多個字段同時建立的組合索引(有順序,ABC,ACB是完全不同的兩種聯合索引) 以聯合索引(a,b,c)為例,建立這樣的索引相當於建立了索引a、ab、abc三個索引。另外組合索引實際還是一個索引,並非真的創建了多個索引,只是產生的效果等價於產生多個索引。

索引下推:MySQL 5.6引入了索引下推優化,可以在索引遍歷過程中,對索引中包含的字段先做判斷,過濾掉不符合條件的記錄,減少回表字數。

索引維護:B+樹為了維護索引有序性涉及到頁分裂跟頁合併。增刪數據時需考慮頁空間利用率。

自增主鍵:一般會建立與業務無關的自增主鍵,不會觸發葉子節點分裂。

延遲關聯:通過使用覆蓋索引查詢返回需要的主鍵,再根據主鍵關聯原表獲得需要的數據。

InnoDB存儲: * .frm文件是一份定義文件,也就是定義數據庫表是一張怎麼樣的表。*.ibd文件則是該表的索引,數據存儲文件,既該表的所有索引樹,所有行記錄數據都存儲在該文件中。

MyISAM存儲:* .frm文件是一份定義文件,也就是定義數據庫表是一張怎麼樣的表。* .MYD文件是MyISAM存儲引擎表的所有行數據的文件。* .MYI文件存放的是MyISAM存儲引擎表的索引相關數據的文件。MyISAM引擎下,表數據和表索引數據是分開存儲的。

MyISAM查詢:在MyISAM下,主鍵索引和輔助鍵索引都屬於非聚簇索引。查詢不管是走主鍵索引,還是非主鍵索引,在葉子結點得到的都是目的數據的地址,還需要通過該地址,才能在數據文件中找到目的數據。

PS:InnoDB支持聚簇索引,MyISAM不支持聚簇索引

4、SQL事務隔離級別

ACID的四個特性

原子性(Atomicity):把多個操作放到一個事務中,保證這些操作要麼都成功,要麼都不成功

一致性(Consistency):理解成一串對數據進行操作的程序執行下來,不會對數據產生不好的影響,比如憑空產生,或消失

隔離性(Isolation,又稱獨立性):隔離性的意思就是多個事務之間互相不干擾,即使是並發事務的情況下,他們只是兩個並發執行沒有交集,互不影響的東西;當然實現中,也不一定需要這麼完整隔離性,即不一定需要這麼的互不干擾,有時候還是允許有部分干擾的。所以MySQL可以支持4種事務隔離性

持久性(Durability):當某個操作操作完畢了,那麼結果就是這樣了,並且這個操作會持久化到日誌記錄中

PS:ACID中C與CAP定理中C的區別

ACID的C着重強調單數據庫事務操作時,要保證數據的完整和正確性,數據不會憑空消失跟增加。CAP 理論中的C指的是對一個數據多個備份的讀寫一致性

事務操作可能會出現的數據問題

1、臟讀(dirty read):B事務更改數據還未提交,A事務已經看到並且用了。B事務如果回滾,則A事務做錯了

2、 不可重複讀(non-repeatable read):不可重複讀的重點是修改: 同樣的條件, 你讀取過的數據, 再次讀取出來發現值不一樣了,只需要鎖住滿足條件的記錄

3、 幻讀(phantom read):事務A先修改了某個表的所有紀錄的狀態字段為已處理,未提交;事務B也在此時新增了一條未處理的記錄,並提交了;事務A隨後查詢記錄,卻發現有一條記錄是未處理的造成幻讀現象,幻讀僅專指新插入的行。幻讀會造成語義上的問題跟數據一致性問題。

4、 在可重複讀RR隔離級別下,普通查詢是快照讀,是不會看到別的事務插入的數據的。因此,幻讀在當前讀下才會出現。要用間隙鎖解決此問題。

在說隔離級別之前,你首先要知道,你隔離得越嚴實,效率就會越低。因此很多時候,我們都要在二者之間尋找一個平衡點。SQL標準的事務隔離級別由低到高如下: 上圖從上到下的模式會導致系統的並行性能依次降低,安全性依次提高。

讀未提交:別人改數據的事務尚未提交,我在我的事務中也能讀到。

讀已提交(Oracle默認):別人改數據的事務已經提交,我在我的事務中才能讀到。

可重複讀(MySQL默認):別人改數據的事務已經提交,我在我的事務中也不去讀,以此保證重複讀一致性。

串行:我的事務尚未提交,別人就別想改數據。

標準跟實現:上面都是關於事務的標準,但是每一種數據庫都有不同的實現,比如MySQL InnDB 默認為RR級別,但是不會出現幻讀。因為當事務A更新了所有記錄的某個字段,此時事務A會獲得對這個表的表鎖,因為事務A還沒有提交,所以事務A獲得的鎖沒有釋放,此時事務B在該表插入新記錄,會因為無法獲得該表的鎖,則導致插入操作被阻塞。只有事務A提交了事務後,釋放了鎖,事務B才能進行接下去的操作。所以可以說 MySQL的RR級別的隔離是已經實現解決了臟讀,不可重複讀和幻讀的。

5、MySQL中的鎖

無論是Java的並發編程還是數據庫的並發操作都會涉及到鎖,研發人員引入了悲觀鎖跟樂觀鎖這樣一種鎖的設計思想。

悲觀鎖:

優點:適合在寫多讀少的並發環境中使用,雖然無法維持非常高的性能,但是在樂觀鎖無法提更好的性能前提下,可以做到數據的安全性

缺點:加鎖會增加系統開銷,雖然能保證數據的安全,但數據處理吞吐量低,不適合在讀書寫少的場合下使用

樂觀鎖:

優點:在讀多寫少的並發場景下,可以避免數據庫加鎖的開銷,提高DAO層的響應性能,很多情況下ORM工具都有帶有樂觀鎖的實現,所以這些方法不一定需要我們人為的去實現。

缺點:在寫多讀少的並發場景下,即在寫操作競爭激烈的情況下,會導致CAS多次重試,衝突頻率過高,導致開銷比悲觀鎖更高。

實現:數據庫層面的樂觀鎖其實跟CAS思想類似, 通數據版本號或者時間戳也可以實現。

數據庫並發場景主要有三種:

讀-讀:不存在任何問題,也不需要並發控制

讀-寫:有隔離性問題,可能遇到臟讀,幻讀,不可重複讀

寫-寫:可能存更新丟失問題,比如第一類更新丟失,第二類更新丟失

兩類更新丟失問題:

第一類更新丟失:事務A的事務回滾覆蓋了事務B已提交的結果 第二類更新丟失:事務A的提交覆蓋了事務B已提交的結果

為了合理貫徹落實鎖的思想,MySQL中引入了雜七雜八的各種鎖:

鎖分類

MySQL支持三種層級的鎖定,分別為

表級鎖定

MySQL中鎖定粒度最大的一種鎖,最常使用的MYISAM與INNODB都支持表級鎖定。

頁級鎖定

是MySQL中鎖定粒度介於行級鎖和表級鎖中間的一種鎖,表級鎖速度快,但衝突多,行級衝突少,但速度慢。所以取了折衷的頁級,一次鎖定相鄰的一組記錄。

行級鎖定

Mysql中鎖定粒度最細的一種鎖,表示只針對當前操作的行進行加鎖。行級鎖能大大減少數據庫操作的衝突。其加鎖粒度最小,但加鎖的開銷也最大行級鎖不一定比表級鎖要好:鎖的粒度越細,代價越高,相比表級鎖在表的頭部直接加鎖,行級鎖還要掃描找到對應的行對其上鎖,這樣的代價其實是比較高的,所以表鎖和行鎖各有所長。

MyISAM中的鎖

雖然MySQL支持表,頁,行三級鎖定,但MyISAM存儲引擎只支持表鎖。所以MyISAM的加鎖相對比較開銷低,但數據操作的並發性能相對就不高。但如果寫操作都是尾插入,那還是可以支持一定程度的讀寫並發

從MyISAM所支持的鎖中也可以看出,MyISAM是一個支持讀讀並發,但不支持通用讀寫並發,寫寫並發的數據庫引擎,所以它更適合用於讀多寫少的應用場合,一般工程中也用的較少。

InnoDB中的鎖

該模式下支持的鎖實在是太多了,具體如下:

共享鎖和排他鎖 (Shared and Exclusive Locks)

意向鎖(Intention Locks)

記錄鎖(Record Locks)

間隙鎖(Gap Locks)

臨鍵鎖 (Next-Key Locks)

插入意向鎖(Insert Intention Locks)

主鍵自增鎖 (AUTO-INC Locks)

空間索引斷言鎖(Predicate Locks for Spatial Indexes)

舉個栗子,比如行鎖里的共享鎖跟排它鎖:lock in share modle 共享讀鎖:

為了確保自己查到的數據沒有被其他的事務正在修改,也就是說確保查到的數據是最新的數據,並且不允許其他人來修改數據。但是自己不一定能夠修改數據,因為有可能其他的事務也對這些數據使用了 in share mode 的方式上了S 鎖。如果不及時的commit 或者rollback 也可能會造成大量的事務等待。

for update排它寫鎖:

為了讓自己查到的數據確保是最新數據,並且查到後的數據只允許自己來修改的時候,需要用到for update。相當於一個 update 語句。在業務繁忙的情況下,如果事務沒有及時的commit或者rollback 可能會造成其他事務長時間的等待,從而影響數據庫的並發使用效率。

Gap Lock間隙鎖:

1、行鎖只能鎖住行,如果在記錄之間的間隙插入數據就無法解決了,因此MySQL引入了間隙鎖(Gap Lock)。間隙鎖是左右開區間。間隙鎖之間不會衝突。

2、間隙鎖和行鎖合稱NextKeyLock,每個NextKeyLock是前開後閉區間。

間隙鎖加鎖原則(學完忘那種):

1、加鎖的基本單位是 NextKeyLock,是前開後閉區間。

2、查找過程中訪問到的對象才會加鎖。

3、索引上的等值查詢,給唯一索引加鎖的時候,NextKeyLock退化為行鎖。

4、索引上的等值查詢,向右遍歷時且最後一個值不滿足等值條件的時候,NextKeyLock退化為間隙鎖。

5、唯一索引上的範圍查詢會訪問到不滿足條件的第一個值為止。

原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/305026.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
小藍的頭像小藍
上一篇 2025-01-01 11:06
下一篇 2025-01-01 11:06

相關推薦

  • 如何修改mysql的端口號

    本文將介紹如何修改mysql的端口號,方便開發者根據實際需求配置對應端口號。 一、為什麼需要修改mysql端口號 默認情況下,mysql使用的端口號是3306。在某些情況下,我們需…

    編程 2025-04-29
  • Python操作MySQL

    本文將從以下幾個方面對Python操作MySQL進行詳細闡述: 一、連接MySQL數據庫 在使用Python操作MySQL之前,我們需要先連接MySQL數據庫。在Python中,我…

    編程 2025-04-29
  • MySQL遞歸函數的用法

    本文將從多個方面對MySQL遞歸函數的用法做詳細的闡述,包括函數的定義、使用方法、示例及注意事項。 一、遞歸函數的定義 遞歸函數是指在函數內部調用自身的函數。MySQL提供了CRE…

    編程 2025-04-29
  • MySQL bigint與long的區別

    本文將從數據類型定義、存儲空間、數據範圍、計算效率、應用場景五個方面詳細闡述MySQL bigint與long的區別。 一、數據類型定義 bigint在MySQL中是一種有符號的整…

    編程 2025-04-28
  • MySQL左連接索引不生效問題解決

    在MySQL數據庫中,經常會使用左連接查詢操作,但是左連接查詢中索引不生效的情況也比較常見。本文將從多個方面探討MySQL左連接索引不生效問題,並給出相應的解決方法。 一、索引的作…

    編程 2025-04-28
  • CentOS 7在線安裝MySQL 8

    在本文中,我們將介紹如何在CentOS 7操作系統中在線安裝MySQL 8。我們會從安裝環境的準備開始,到安裝MySQL 8的過程進行詳細的闡述。 一、環境準備 在進行MySQL …

    編程 2025-04-27
  • 如何使用MySQL字段去重

    本文將從多個方面為您詳細介紹如何使用MySQL字段去重並給出相應的代碼示例。 一、SELECT DISTINCT語句去重 MySQL提供了SELECT DISTINCT語句,通過在…

    編程 2025-04-27
  • MySQL正則表達式替換

    MySQL正則表達式替換是指通過正則表達式對MySQL中的字符串進行替換。在文本處理方面,正則表達式是一種強大的工具,可以方便快捷地進行字符串處理和匹配。在MySQL中,可以使用正…

    編程 2025-04-27
  • Apache2.4和MySQL的全能編程開發工程師指南

    本文將從多個方面對Apache2.4和MySQL進行詳細的闡述,為全能編程開發工程師提供有用的參考和指導。首先,我們來解答這個標題所涵蓋的主題: 本文將提供Apache2.4和My…

    編程 2025-04-27
  • MySQL JDBC驅動包下載詳解

    一、JDBC驅動介紹 JDBC是Java Database Connectivity的縮寫,它是Java應用程序與各種數據庫連接的標準API,允許Java程序員使用JDBC API…

    編程 2025-04-25

發表回復

登錄後才能評論