python學習收藏(python速記手冊)

本文目錄一覽:

Python培訓課程內容有哪些

Python開發基礎課程內容包括:計算機硬件、操作系統原理、安裝linux操作系統、linux操作系統維護常用命令、Python語言介紹、環境安裝、基本語法、基本數據類型、二進制運算、流程控制、字符編碼、文件處理、數據類型、用戶認證、三級菜單程序、購物車程序開發、函數、內置方法、遞歸、迭代器、裝飾器、內置方法、員工信息表開發、模塊的跨目錄導入、常用標準庫學習,b加密\re正則\logging日誌模塊等,軟件開發規範學習,計算器程序、ATM程序開發等。

Linux是作為開發者必須要掌握的操作平台,在這個平台上無論是開發Web項目,運行SQL數據庫還是部署爬蟲、大數據分析、以及AI開發,都可以很好的實現。作為一門編程語言的學習,大概可以分為幾個部分:編程語法、面向對象的編程思想、常用設計模式、常用排序算法,內容有關係型數據庫表的設計、增刪改查以及SQL語句的編寫、SQL和NoSQL數據庫的使用場景和設計難點、Python對數據庫的連接。千鋒教育擁有多年Python培訓服務經驗,採用全程面授高品質、高體驗培養模式,擁有國內一體化教學管理及學員服務,助力更多學員實現高薪夢想。

如何學好python

想學習Python?怎麼少得了一份完整的學習路線呢。下面分享一份自己收藏的Python學習路線,希望能幫到大家。

學Python一般在2萬左右,4-6個月左右的時間。應該根據自己的實際需求去學校實地看一下,面授的,先好好試聽之後,再選擇適合自己的。只要努力學到真東西,前途自然不會差。

建議收藏!10 種 Python 聚類算法完整操作示例

聚類或聚類分析是無監督學習問題。它通常被用作數據分析技術,用於發現數據中的有趣模式,例如基於其行為的客戶群。有許多聚類算法可供選擇,對於所有情況,沒有單一的最佳聚類算法。相反,最好探索一系列聚類算法以及每種算法的不同配置。在本教程中,你將發現如何在 python 中安裝和使用頂級聚類算法。完成本教程後,你將知道:

聚類分析,即聚類,是一項無監督的機器學習任務。它包括自動發現數據中的自然分組。與監督學習(類似預測建模)不同,聚類算法只解釋輸入數據,並在特徵空間中找到自然組或群集。

群集通常是特徵空間中的密度區域,其中來自域的示例(觀測或數據行)比其他群集更接近群集。群集可以具有作為樣本或點特徵空間的中心(質心),並且可以具有邊界或範圍。

聚類可以作為數據分析活動提供幫助,以便了解更多關於問題域的信息,即所謂的模式發現或知識發現。例如:

聚類還可用作特徵工程的類型,其中現有的和新的示例可被映射並標記為屬於數據中所標識的群集之一。雖然確實存在許多特定於群集的定量措施,但是對所識別的群集的評估是主觀的,並且可能需要領域專家。通常,聚類算法在人工合成數據集上與預先定義的群集進行學術比較,預計算法會發現這些群集。

有許多類型的聚類算法。許多算法在特徵空間中的示例之間使用相似度或距離度量,以發現密集的觀測區域。因此,在使用聚類算法之前,擴展數據通常是良好的實踐。

一些聚類算法要求您指定或猜測數據中要發現的群集的數量,而另一些算法要求指定觀測之間的最小距離,其中示例可以被視為“關閉”或“連接”。因此,聚類分析是一個迭代過程,在該過程中,對所識別的群集的主觀評估被反饋回算法配置的改變中,直到達到期望的或適當的結果。scikit-learn 庫提供了一套不同的聚類算法供選擇。下面列出了10種比較流行的算法:

每個算法都提供了一種不同的方法來應對數據中發現自然組的挑戰。沒有最好的聚類算法,也沒有簡單的方法來找到最好的算法為您的數據沒有使用控制實驗。在本教程中,我們將回顧如何使用來自 scikit-learn 庫的這10個流行的聚類算法中的每一個。這些示例將為您複製粘貼示例並在自己的數據上測試方法提供基礎。我們不會深入研究算法如何工作的理論,也不會直接比較它們。讓我們深入研究一下。

在本節中,我們將回顧如何在 scikit-learn 中使用10個流行的聚類算法。這包括一個擬合模型的例子和可視化結果的例子。這些示例用於將粘貼複製到您自己的項目中,並將方法應用於您自己的數據。

1.庫安裝

首先,讓我們安裝庫。不要跳過此步驟,因為你需要確保安裝了最新版本。你可以使用 pip Python 安裝程序安裝 scikit-learn 存儲庫,如下所示:

接下來,讓我們確認已經安裝了庫,並且您正在使用一個現代版本。運行以下腳本以輸出庫版本號。

運行該示例時,您應該看到以下版本號或更高版本。

2.聚類數據集

我們將使用 make _ classification ()函數創建一個測試二分類數據集。數據集將有1000個示例,每個類有兩個輸入要素和一個群集。這些群集在兩個維度上是可見的,因此我們可以用散點圖繪製數據,並通過指定的群集對圖中的點進行顏色繪製。這將有助於了解,至少在測試問題上,群集的識別能力如何。該測試問題中的群集基於多變量高斯,並非所有聚類算法都能有效地識別這些類型的群集。因此,本教程中的結果不應用作比較一般方法的基礎。下面列出了創建和匯總合成聚類數據集的示例。

運行該示例將創建合成的聚類數據集,然後創建輸入數據的散點圖,其中點由類標籤(理想化的群集)着色。我們可以清楚地看到兩個不同的數據組在兩個維度,並希望一個自動的聚類算法可以檢測這些分組。

已知聚類着色點的合成聚類數據集的散點圖接下來,我們可以開始查看應用於此數據集的聚類算法的示例。我已經做了一些最小的嘗試來調整每個方法到數據集。3.親和力傳播親和力傳播包括找到一組最能概括數據的範例。

它是通過 AffinityPropagation 類實現的,要調整的主要配置是將“ 阻尼 ”設置為0.5到1,甚至可能是“首選項”。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集着色。在這種情況下,我無法取得良好的結果。

數據集的散點圖,具有使用親和力傳播識別的聚類

4.聚合聚類

聚合聚類涉及合併示例,直到達到所需的群集數量為止。它是層次聚類方法的更廣泛類的一部分,通過 AgglomerationClustering 類實現的,主要配置是“ n _ clusters ”集,這是對數據中的群集數量的估計,例如2。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集着色。在這種情況下,可以找到一個合理的分組。

使用聚集聚類識別出具有聚類的數據集的散點圖

5.BIRCHBIRCH

聚類( BIRCH 是平衡迭代減少的縮寫,聚類使用層次結構)包括構造一個樹狀結構,從中提取聚類質心。

它是通過 Birch 類實現的,主要配置是“ threshold ”和“ n _ clusters ”超參數,後者提供了群集數量的估計。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集着色。在這種情況下,可以找到一個很好的分組。

使用BIRCH聚類確定具有聚類的數據集的散點圖

6.DBSCANDBSCAN

聚類(其中 DBSCAN 是基於密度的空間聚類的噪聲應用程序)涉及在域中尋找高密度區域,並將其周圍的特徵空間區域擴展為群集。

它是通過 DBSCAN 類實現的,主要配置是“ eps ”和“ min _ samples ”超參數。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集着色。在這種情況下,儘管需要更多的調整,但是找到了合理的分組。

使用DBSCAN集群識別出具有集群的數據集的散點圖

7.K均值

K-均值聚類可以是最常見的聚類算法,並涉及向群集分配示例,以盡量減少每個群集內的方差。

它是通過 K-均值類實現的,要優化的主要配置是“ n _ clusters ”超參數設置為數據中估計的群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集着色。在這種情況下,可以找到一個合理的分組,儘管每個維度中的不等等方差使得該方法不太適合該數據集。

使用K均值聚類識別出具有聚類的數據集的散點圖

8.Mini-Batch

K-均值Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的樣本而不是整個數據集對群集質心進行更新,這可以使大數據集的更新速度更快,並且可能對統計噪聲更健壯。

它是通過 MiniBatchKMeans 類實現的,要優化的主配置是“ n _ clusters ”超參數,設置為數據中估計的群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集着色。在這種情況下,會找到與標準 K-均值算法相當的結果。

帶有最小批次K均值聚類的聚類數據集的散點圖

9.均值漂移聚類

均值漂移聚類涉及到根據特徵空間中的實例密度來尋找和調整質心。

它是通過 MeanShift 類實現的,主要配置是“帶寬”超參數。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集着色。在這種情況下,可以在數據中找到一組合理的群集。

具有均值漂移聚類的聚類數據集散點圖

10.OPTICSOPTICS

聚類( OPTICS 短於訂購點數以標識聚類結構)是上述 DBSCAN 的修改版本。

它是通過 OPTICS 類實現的,主要配置是“ eps ”和“ min _ samples ”超參數。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集着色。在這種情況下,我無法在此數據集上獲得合理的結果。

使用OPTICS聚類確定具有聚類的數據集的散點圖

11.光譜聚類

光譜聚類是一類通用的聚類方法,取自線性線性代數。

它是通過 Spectral 聚類類實現的,而主要的 Spectral 聚類是一個由聚類方法組成的通用類,取自線性線性代數。要優化的是“ n _ clusters ”超參數,用於指定數據中的估計群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集着色。在這種情況下,找到了合理的集群。

使用光譜聚類聚類識別出具有聚類的數據集的散點圖

12.高斯混合模型

高斯混合模型總結了一個多變量概率密度函數,顧名思義就是混合了高斯概率分布。它是通過 Gaussian Mixture 類實現的,要優化的主要配置是“ n _ clusters ”超參數,用於指定數據中估計的群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集着色。在這種情況下,我們可以看到群集被完美地識別。這並不奇怪,因為數據集是作為 Gaussian 的混合生成的。

使用高斯混合聚類識別出具有聚類的數據集的散點圖

在本文中,你發現了如何在 python 中安裝和使用頂級聚類算法。具體來說,你學到了:

小白都看懂了,Python 中的線程和進程精講,建議收藏

目錄

眾所周知,CPU是計算機的核心,它承擔了所有的計算任務。而操作系統是計算機的管理者,是一個大管家,它負責任務的調度,資源的分配和管理,統領整個計算機硬件。應用程序是具有某種功能的程序,程序運行與操作系統之上

在很早的時候計算機並沒有線程這個概念,但是隨着時代的發展,只用進程來處理程序出現很多的不足。如當一個進程堵塞時,整個程序會停止在堵塞處,並且如果頻繁的切換進程,會浪費系統資源。所以線程出現了

線程是能擁有資源和獨立運行的最小單位,也是程序執行的最小單位。一個進程可以擁有多個線程,而且屬於同一個進程的多個線程間會共享該進行的資源

① 200 多本 Python 電子書(和經典的書籍)應該有

② Python標準庫資料(最全中文版)

③ 項目源碼(四五十個有趣且可靠的練手項目及源碼)

④ Python基礎入門、爬蟲、網絡開發、大數據分析方面的視頻(適合小白學習)

⑤ Python學習路線圖(告別不入流的學習)

私信我01即可獲取大量Python學習資源

進程時一個具有一定功能的程序在一個數據集上的一次動態執行過程。進程由程序,數據集合和進程控制塊三部分組成。程序用於描述進程要完成的功能,是控制進程執行的指令集;數據集合是程序在執行時需要的數據和工作區;程序控制塊(PCB)包含程序的描述信息和控制信息,是進程存在的唯一標誌

在Python中,通過兩個標準庫 thread 和 Threading 提供對線程的支持, threading 對 thread 進行了封裝。 threading 模塊中提供了 Thread , Lock , RLOCK , Condition 等組件

在Python中線程和進程的使用就是通過 Thread 這個類。這個類在我們的 thread 和 threading 模塊中。我們一般通過 threading 導入

默認情況下,只要在解釋器中,如果沒有報錯,則說明線程可用

守護模式:

現在我們程序代碼中,有多個線程, 並且在這個幾個線程中都會去 操作同一部分內容,那麼如何實現這些數據的共享呢?

這時,可以使用 threading庫裡面的鎖對象 Lock 去保護

Lock 對象的acquire方法 是申請鎖

每個線程在操作共享數據對象之前,都應該申請獲取操作權,也就是調用該共享數據對象對應的鎖對象的acquire方法,如果線程A 執行了 acquire() 方法,別的線程B 已經申請到了這個鎖, 並且還沒有釋放,那麼 線程A的代碼就在此處 等待 線程B 釋放鎖,不去執行後面的代碼。

直到線程B 執行了鎖的 release 方法釋放了這個鎖, 線程A 才可以獲取這個鎖,就可以執行下面的代碼了

如:

到在使用多線程時,如果數據出現和自己預期不符的問題,就可以考慮是否是共享的數據被調用覆蓋的問題

使用 threading 庫裡面的鎖對象 Lock 去保護

Python中的多進程是通過multiprocessing包來實現的,和多線程的threading.Thread差不多,它可以利用multiprocessing.Process對象來創建一個進程對象。這個進程對象的方法和線程對象的方法差不多也有start(), run(), join()等方法,其中有一個方法不同Thread線程對象中的守護線程方法是setDeamon,而Process進程對象的守護進程是通過設置daemon屬性來完成的

守護模式:

其使用方法和線程的那個 Lock 使用方法類似

Manager的作用是提供多進程共享的全局變量,Manager()方法會返回一個對象,該對象控制着一個服務進程,該進程中保存的對象運行其他進程使用代理進行操作

語法:

線程池的基類是 concurrent.futures 模塊中的 Executor , Executor 提供了兩個子類,即 ThreadPoolExecutor 和 ProcessPoolExecutor ,其中 ThreadPoolExecutor 用於創建線程池,而 ProcessPoolExecutor 用於創建進程池

如果使用線程池/進程池來管理並發編程,那麼只要將相應的 task 函數提交給線程池/進程池,剩下的事情就由線程池/進程池來搞定

Exectuor 提供了如下常用方法:

程序將 task 函數提交(submit)給線程池後,submit 方法會返回一個 Future 對象,Future 類主要用於獲取線程任務函數的返回值。由於線程任務會在新線程中以異步方式執行,因此,線程執行的函數相當於一個“將來完成”的任務,所以 Python 使用 Future 來代表

Future 提供了如下方法:

使用線程池來執行線程任務的步驟如下:

最佳線程數目 = ((線程等待時間+線程CPU時間)/線程CPU時間 )* CPU數目

也可以低於 CPU 核心數

使用線程池來執行線程任務的步驟如下:

關於進程的開啟代碼一定要放在 if __name__ == ‘__main__’: 代碼之下,不能放到函數中或其他地方

開啟進程的技巧

開啟進程的數量最好低於最大 CPU 核心數

初學者如何學習python?

Python相對比較簡單,零基礎也能學,但新手不建議自學。

python是一門語法優美的編程語言,不僅可以作為小工具使用提升我們日常工作效率,也可以單獨作為一項高新就業技能!所以學完Python編程之後,只要真的掌握了相關技術,想要找到好的工作還是比較容易的。

建議大家可以從以下三方面來入手:

①先自學一些python書籍

大家可以從書中了解一些基礎知識,建立一些編程認知。

但是這樣的方式,還是難免會因為沒什麼基礎很快就覺得枯燥了,所以在書籍方面還是建議大家結合視頻課程一起來學習,才能更高效一點。

②網上找相關課程

在mooc網學習的是北京理工大學的一門python公開課,整個流程學習下來能夠了解一些基礎相關,但課程比較淺顯,還是感覺有些不系統,也很難靠自學迅速入門。

③報班學習

很多人對網上報班有些排斥,因為難免會覺得會被割韭菜。但是對於零基礎的小白學習python編程而言,跟着專業系統化一點的團隊一起學習,勢必會更省時省力一點的。

畢竟我們沒有基礎,靠自學又沒啥時間去堅持,能有合適的【線上陪伴式】的課程,還是挺值得一試的。建議大家可以先從體驗課開始,了解清楚課程含金量,看看往期學員的體驗回饋後再報班學習。

Python的學習學習順序如下:

①Python軟件開發基礎

②Python軟件開發進階

③Python全棧式WEB工程師

④Python多領域開發

互聯網行業目前還是最熱門的行業之一,學習IT技能之後足夠優秀是有機會進入騰訊、阿里、網易等互聯網大廠高薪就業的,發展前景非常好,普通人也可以學習。

想要系統學習,你可以考察對比一下開設有相關專業的熱門學校,好的學校擁有根據當下企業需求自主研發課程的能力,能夠在校期間取得大專或本科學歷,中博軟件學院、南京課工場、南京北大青鳥等開設相關專業的學校都是不錯的,建議實地考察對比一下。

祝你學有所成,望採納。

原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/303183.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
小藍的頭像小藍
上一篇 2024-12-31 11:49
下一篇 2024-12-31 11:49

相關推薦

  • Python中引入上一級目錄中函數

    Python中經常需要調用其他文件夾中的模塊或函數,其中一個常見的操作是引入上一級目錄中的函數。在此,我們將從多個角度詳細解釋如何在Python中引入上一級目錄的函數。 一、加入環…

    編程 2025-04-29
  • Python列表中負數的個數

    Python列表是一個有序的集合,可以存儲多個不同類型的元素。而負數是指小於0的整數。在Python列表中,我們想要找到負數的個數,可以通過以下幾個方面進行實現。 一、使用循環遍歷…

    編程 2025-04-29
  • Python周杰倫代碼用法介紹

    本文將從多個方面對Python周杰倫代碼進行詳細的闡述。 一、代碼介紹 from urllib.request import urlopen from bs4 import Bea…

    編程 2025-04-29
  • Python計算陽曆日期對應周幾

    本文介紹如何通過Python計算任意陽曆日期對應周幾。 一、獲取日期 獲取日期可以通過Python內置的模塊datetime實現,示例代碼如下: from datetime imp…

    編程 2025-04-29
  • 如何查看Anaconda中Python路徑

    對Anaconda中Python路徑即conda環境的查看進行詳細的闡述。 一、使用命令行查看 1、在Windows系統中,可以使用命令提示符(cmd)或者Anaconda Pro…

    編程 2025-04-29
  • Python中capitalize函數的使用

    在Python的字符串操作中,capitalize函數常常被用到,這個函數可以使字符串中的第一個單詞首字母大寫,其餘字母小寫。在本文中,我們將從以下幾個方面對capitalize函…

    編程 2025-04-29
  • PHP和Python哪個好找工作?

    PHP和Python都是非常流行的編程語言,它們被廣泛應用於不同領域的開發中。但是,在考慮擇業方向的時候,很多人都會有一個問題:PHP和Python哪個好找工作?這篇文章將從多個方…

    編程 2025-04-29
  • Python for循環求1到100的積

    Python中的for循環可以方便地遍歷列表、元組、字典等數據類型。本文將以Python for循環求1到100的積為中心,從多個方面進行詳細闡述。 一、for循環語法 Pytho…

    編程 2025-04-29
  • Python程序需要編譯才能執行

    Python 被廣泛應用於數據分析、人工智能、科學計算等領域,它的靈活性和簡單易學的性質使得越來越多的人喜歡使用 Python 進行編程。然而,在 Python 中程序執行的方式不…

    編程 2025-04-29
  • Python字典去重複工具

    使用Python語言編寫字典去重複工具,可幫助用戶快速去重複。 一、字典去重複工具的需求 在使用Python編寫程序時,我們經常需要處理數據文件,其中包含了大量的重複數據。為了方便…

    編程 2025-04-29

發表回復

登錄後才能評論