包含python如何實現簡單的驗證碼輸入的詞條

本文目錄一覽:

python如何識別驗證碼

我們首先識別最簡單的一種驗證碼,即圖形驗證碼。這種驗證碼最早出現,現在也很常見,一般由4位字母或者數字組成。例如,中國知網的註冊頁面有類似的驗證碼,頁面如下所示:

表單中最後一項就是圖形驗證碼,我們必須完全正確輸入圖中的字符才可以完成註冊。

更多有關驗證碼的知識,可以參考這些文章:

Python3爬蟲進階:識別圖形驗證碼

Python3爬蟲進階:識別極驗滑動驗證碼

Python3爬蟲進階:識別點觸點選驗證碼

Python3爬蟲進階:識別微博宮格驗證碼

·本節目標以知網的驗證碼為例,講解利用OCR技術識別圖形驗證碼的方法。

·準備工作識別圖形驗證碼需要庫tesserocr,以mac安裝為例:在mac下,我們首先使用Homebrew安裝ImageMagick和tesseract庫:    brew install imagemagickbrew install tesseract 接下來再安裝tesserocr即可:pip3 install tesserocr pillow這樣我們就完成了            tesserocr的安裝。

·獲取驗證碼為了便於實驗,我們先將驗證碼的圖片保存到本地。打開開發者工具,找到驗證碼元素。驗證碼元素是一張圖片,它的ser屬    性是CheckCode.aspk。所以我們直接打開如下鏈接就可以看到一個驗證碼,右鍵保存即可,將其命名為code.jpg:

這樣我們就得到一張驗證碼圖片,以供測試識別使用。

相關推薦:《Python教程》

識別測試

接下來新建一個項目,將驗證碼圖片放到項目根目錄下,用tesserocr庫識別該驗證碼,代碼如下所示:

這裡我們新建了一個Image對戲那個,調用了tesserocr的image_to_text( )方法。傳入該Image對象即可完成識別,實現過程非常簡單,結果如下:

我們可以看到,識別的結果和實際結果有偏差,這是因為驗證碼內的多餘線條幹擾了圖片的識別。

另外,tesserocr還有一個更加簡單的方法,這個方法可以直接將圖片文件轉為字符串,代碼如下:

不過這種方法的識別效果不如上一種的好。

驗證碼處理

對於上面的圖片,我們可以看到其實並沒有完全識別正確,所以我們需要對圖像作進一步的處理,如灰度轉換、二值化等操作。

我們可以利用Image對象的convert( )方法參數傳入L,即可將圖片轉化為灰度圖像,代碼如下:

傳入1即可將圖片進行二值化處理,如下所示:

我們還可以指定二值化的閾值。上面的方法採用的是默認閾值127。不過我們不能直接轉化原圖,要將原圖先轉化為灰度圖像,然後再指定二值化閾值,代碼如下:

在這裡,變量threshold代表二值化閾值,閾值設置為160,之後我們來看看我們的結果:

我們可以看到現在的二維碼就比較方便我們進行識別了;那麼對於一些有干擾的圖片,我們做一些灰度和二值化處理,這會提高圖片識別的正確率。

如何利用Python做簡單的驗證碼識別

先是獲取驗證碼樣本。。。我存了大概500個。

用dia測了測每個字之間的間距,直接用PIL開始切。

from PIL import Image

for j in range(0,500):

f=Image.open(“../test{}.jpg”.format(j))

for i in range(0,4):

f.crop((20+20*i,0,40+20*i,40)).save(“test{0}-{1}.jpg”.format(j,i+1))

上面一段腳本的意思是把jpg切成四個小塊然後保存

之後就是二值化啦。

def TotallyShit(im):

x,y=im.size

mmltilist=list()

for i in range(x):

for j in range(y):

if im.getpixel((i,j))200:

mmltilist.append(1)

else:

mmltilist.append(0)

return mmltilist

咳咳,不要在意函數的名字。上面的一段代碼的意思是遍歷圖片的每個像素點,顏色數值小於200的用1表示,其他的用0表示。

其中的im代表的是Image.open()類型。

切好的圖片長這樣的。

只能說這樣切的圖片還是很粗糙,很僵硬。

下面就是分類啦。

把0-9,“+”,”-“的圖片挑好並放在不同的文件夾裡面,這裡就是純體力活了。

再之後就是模型建立了。

這裡我試了自己寫的還有sklearn svm和sklearn neural_network。發現最後一個的識別正確率高的多。不知道是不是我樣本問題QAQ。

下面是模型建立的代碼

from sklearn.neural_network import MLPClassifier

import numpy as np

def clf():

clf=MLPClassifier()

mmltilist=list()

X=list()

for i in range(0,12):

for j in os.listdir(“douplings/douplings-{}”.format(i)):

mmltilist.append(TotallyShit(Image.open(“douplings/douplings-{0}/{1}”.format(i,j)).convert(“L”)))

X.append(i)

clf.fit(mmltilist,X)

return clf

大概的意思是從圖片源中讀取圖片和label然後放到模型中去跑吧。

之後便是圖像匹配啦。

def get_captcha(self):

with open(“test.jpg”,”wb”) as f:

f.write(self.session.get(self.live_captcha_url).content)

gim=Image.open(“test.jpg”).convert(“L”)

recognize_list=list()

for i in range(0,4):

part=TotallyShit(gim.crop((20+20*i,0,40+20*i,40)))

np_part_array=np.array(part).reshape(1,-1)

predict_num=int(self.clf.predict(np_part_array)[0])

if predict_num==11:

recognize_list.append(“+”)

elif predict_num==10:

recognize_list.append(“-“)

else:

recognize_list.append(str(predict_num))

return ”.join(recognize_list)

最後eval一下識別出來的字符串就得出結果了。。

順便提一句現在的bilibili登陸改成rsa加密了,麻蛋,以前的腳本全部作廢,心好痛。

登陸的代碼。

import time

import requests

import rsa

r=requests.session()

data=r.get(“act=getkey_=”+str(int(time.time()*1000))).json()

pub_key=rsa.PublicKey.load_pkcs1_openssl_pem(data[‘key’])

payload = {

‘keep’: 1,

‘captcha’: ”,

‘userid’: “youruserid”,

‘pwd’: b64encode(rsa.encrypt((data[‘hash’] +”yourpassword”).encode(), pub_key)).decode(),

}

r.post(“”,data=payload)

selenium+python怎麼模擬用戶輸入驗證碼登錄

selenium模塊調用瀏覽器chromdriver,這樣就是一個可以看見的瀏覽器,用戶可以手動的去填寫驗證碼,然後下面就交給程序去操作了

如果你能採用圖像識別,那就不需要用selenium了,用selenium在爬蟲中主要目的是加載js文件,

如果能直接抓取登錄接口,直接一個post就能搞定!!!

python簡單驗證碼識別的實現過程

demo :

import pytesseract

from PIL import Image

image = Image.open(“captcha.png”)

print(pytesseract.image_to_string(image))

=================================================

=================================================中文識別

import pytesseract

from PIL import Image

image = Image.open(“00.jpg”)

print(pytesseract.image_to_string(image,lang=’chi_sim’))

有時候文本識別率並不高,建議圖像識別前,先對圖像進行灰度化和 二值化

效果如下(有時候第一次可能識別失敗,可以寫個循環邏輯讓它多識別幾次,一般程序運行1-3次基本會識別成功):

原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/295496.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
小藍的頭像小藍
上一篇 2024-12-27 12:56
下一篇 2024-12-27 12:56

相關推薦

  • Python簡單數學計算

    本文將從多個方面介紹Python的簡單數學計算,包括基礎運算符、函數、庫以及實際應用場景。 一、基礎運算符 Python提供了基礎的算術運算符,包括加(+)、減(-)、乘(*)、除…

    編程 2025-04-29
  • Python滿天星代碼:讓編程變得更加簡單

    本文將從多個方面詳細闡述Python滿天星代碼,為大家介紹它的優點以及如何在編程中使用。無論是剛剛接觸編程還是資深程序員,都能從中獲得一定的收穫。 一、簡介 Python滿天星代碼…

    編程 2025-04-29
  • 如何實現圖像粘貼到蒙版

    本文將從多個方面介紹圖像粘貼到蒙版的實現方法。 一、創建蒙版 首先,在HTML中創建一個蒙版元素,用於接收要粘貼的圖片。 <div id=”mask” style=”widt…

    編程 2025-04-29
  • Python海龜代碼簡單畫圖

    本文將介紹如何使用Python的海龜庫進行簡單畫圖,並提供相關示例代碼。 一、基礎用法 使用Python的海龜庫,我們可以控制一個小海龜在窗口中移動,並利用它的“畫筆”在窗口中繪製…

    編程 2025-04-29
  • Django ORM如何實現或的條件查詢

    在我們使用Django進行數據庫操作的時候,查詢條件往往不止一個,一個好的查詢語句需要考慮我們的查詢要求以及業務場景。在實際工作中,我們經常需要使用或的條件進行查詢,本文將詳細介紹…

    編程 2025-04-29
  • Python櫻花樹代碼簡單

    本文將對Python櫻花樹代碼進行詳細的闡述和講解,幫助讀者更好地理解該代碼的實現方法。 一、簡介 櫻花樹是一種圖形效果,它的實現方法比較簡單。Python中可以通過turtle這…

    編程 2025-04-28
  • Python一次性輸入10個數如何實現?

    Python提供了多種方法進行輸入,可以手動逐個輸入,也可以一次性輸入多個數。在需要輸入大量數據時,一次性輸入十個數就非常方便。下面我們從多個方面來講解如何一次性輸入10個數。 一…

    編程 2025-04-28
  • Python大神作品:讓編程變得更加簡單

    Python作為一種高級的解釋性編程語言,一直被廣泛地運用於各個領域,從Web開發、遊戲開發到人工智能,Python都扮演着重要的角色。Python的代碼簡潔明了,易於閱讀和維護,…

    編程 2025-04-28
  • 用Python實現簡單爬蟲程序

    在當今時代,互聯網上的信息量是爆炸式增長的,其中很多信息可以被利用。對於數據分析、數據挖掘或者其他一些需要大量數據的任務,我們可以使用爬蟲技術從各個網站獲取需要的信息。而Pytho…

    編程 2025-04-28
  • 如何實現van-picker點擊遮罩不關閉

    van-picker是一個非常實用的Vue組件,但默認情況下,點擊遮罩會自動關閉選擇器。本文將介紹如何通過代碼實現van-picker點擊遮罩不關閉的功能。 一、通過覆蓋遮罩實現 …

    編程 2025-04-27

發表回復

登錄後才能評論