包含用python實現因子分析的詞條

本文目錄一覽:

可以讓你快速用Python進行數據分析的10個小技巧

一些小提示和小技巧可能是非常有用的,特別是在編程領域。有時候使用一點點黑客技術,既可以節省時間,還可能挽救“生命”。

一個小小的快捷方式或附加組件有時真是天賜之物,並且可以成為真正的生產力助推器。所以,這裡有一些小提示和小技巧,有些可能是新的,但我相信在下一個數據分析項目中會讓你非常方便。

Pandas中數據框數據的Profiling過程

Profiling(分析器)是一個幫助我們理解數據的過程,而Pandas Profiling是一個Python包,它可以簡單快速地對Pandas 的數據框數據進行 探索 性數據分析。

Pandas中df.describe()和df.info()函數可以實現EDA過程第一步。但是,它們只提供了對數據非常基本的概述,對於大型數據集沒有太大幫助。 而Pandas中的Profiling功能簡單通過一行代碼就能顯示大量信息,且在交互式HTML報告中也是如此。

對於給定的數據集,Pandas中的profiling包計算了以下統計信息:

由Pandas Profiling包計算出的統計信息包括直方圖、眾數、相關係數、分位數、描述統計量、其他信息——類型、單一變量值、缺失值等。

安裝

用pip安裝或者用conda安裝

pip install pandas-profiling

conda install -c anaconda pandas-profiling

用法

下面代碼是用很久以前的泰坦尼克數據集來演示多功能Python分析器的結果。

#importing the necessary packages

import pandas as pd

import pandas_profiling

df = pd.read_csv(‘titanic/train.csv’)

pandas_profiling.ProfileReport(df)

一行代碼就能實現在Jupyter Notebook中顯示完整的數據分析報告,該報告非常詳細,且包含了必要的圖表信息。

還可以使用以下代碼將報告導出到交互式HTML文件中。

profile = pandas_profiling.ProfileReport(df)

profile.to_file(outputfile=”Titanic data profiling.html”)

Pandas實現交互式作圖

Pandas有一個內置的.plot()函數作為DataFrame類的一部分。但是,使用此功能呈現的可視化不是交互式的,這使得它沒那麼吸引人。同樣,使用pandas.DataFrame.plot()函數繪製圖表也不能實現交互。 如果我們需要在不對代碼進行重大修改的情況下用Pandas繪製交互式圖表怎麼辦呢?這個時候就可以用Cufflinks庫來實現。

Cufflinks庫可以將有強大功能的plotly和擁有靈活性的pandas結合在一起,非常便於繪圖。下面就來看在pandas中如何安裝和使用Cufflinks庫。

安裝

pip install plotly

# Plotly is a pre-requisite before installing cufflinks

pip install cufflinks

用法

#importing Pandas

import pandas as pd

#importing plotly and cufflinks in offline mode

import cufflinks as cf

import plotly.offline

cf.go_offline()

cf.set_config_file(offline=False, world_readable=True)

是時候展示泰坦尼克號數據集的魔力了。

df.iplot()

df.iplot() vs df.plot()

右側的可視化顯示了靜態圖表,而左側圖表是交互式的,更詳細,並且所有這些在語法上都沒有任何重大更改。

Magic命令

Magic命令是Jupyter notebook中的一組便捷功能,旨在解決標準數據分析中的一些常見問題。使用命令%lsmagic可以看到所有的可用命令。

所有可用的Magic命令列表

Magic命令有兩種:行magic命令(line magics),以單個%字符為前綴,在單行輸入操作;單元magic命令(cell magics),以雙%%字符為前綴,可以在多行輸入操作。如果設置為1,則不用鍵入%即可調用Magic函數。

接下來看一些在常見數據分析任務中可能用到的命令:

% pastebin

%pastebin將代碼上傳到Pastebin並返回url。Pastebin是一個在線內容託管服務,可以存儲純文本,如源代碼片段,然後通過url可以與其他人共享。事實上,Github gist也類似於pastebin,只是有版本控制。

在file.py文件中寫一個包含以下內容的python腳本,並試着運行看看結果。

#file.py

def foo(x):

return x

在Jupyter Notebook中使用%pastebin生成一個pastebin url。

%matplotlib notebook

函數用於在Jupyter notebook中呈現靜態matplotlib圖。用notebook替換inline,可以輕鬆獲得可縮放和可調整大小的繪圖。但記得這個函數要在導入matplotlib庫之前調用。

%run

用%run函數在notebook中運行一個python腳本試試。

%run file.py

%%writefile

%% writefile是將單元格內容寫入文件中。以下代碼將腳本寫入名為foo.py的文件並保存在當前目錄中。

%%latex

%%latex函數將單元格內容以LaTeX形式呈現。此函數對於在單元格中編寫數學公式和方程很有用。

查找並解決錯誤

交互式調試器也是一個神奇的功能,我把它單獨定義了一類。如果在運行代碼單元時出現異常,請在新行中鍵入%debug並運行它。 這將打開一個交互式調試環境,它能直接定位到發生異常的位置。還可以檢查程序中分配的變量值,並在此處執行操作。退出調試器單擊q即可。

Printing也有小技巧

如果您想生成美觀的數據結構,pprint是首選。它在打印字典數據或JSON數據時特別有用。接下來看一個使用print和pprint來顯示輸出的示例。

讓你的筆記脫穎而出

我們可以在您的Jupyter notebook中使用警示框/注釋框來突出顯示重要內容或其他需要突出的內容。注釋的顏色取決於指定的警報類型。只需在需要突出顯示的單元格中添加以下任一代碼或所有代碼即可。

藍色警示框:信息提示

p class=”alert alert-block alert-info”

bTip:/b Use blue boxes (alert-info) for tips and notes.

If it’s a note, you don’t have to include the word “Note”.

/p

黃色警示框:警告

p class=”alert alert-block alert-warning”

bExample:/b Yellow Boxes are generally used to include additional examples or mathematical formulas.

/p

綠色警示框:成功

p class=”alert alert-block alert-success”

Use green box only when necessary like to display links to related content.

/p

紅色警示框:高危

p class=”alert alert-block alert-danger”

It is good to avoid red boxes but can be used to alert users to not delete some important part of code etc.

/p

打印單元格所有代碼的輸出結果

假如有一個Jupyter Notebook的單元格,其中包含以下代碼行:

In [1]: 10+5

11+6

Out [1]: 17

單元格的正常屬性是只打印最後一個輸出,而對於其他輸出,我們需要添加print()函數。然而通過在notebook頂部添加以下代碼段可以一次打印所有輸出。

添加代碼後所有的輸出結果就會一個接一個地打印出來。

In [1]: 10+5

11+6

12+7

Out [1]: 15

Out [1]: 17

Out [1]: 19

恢復原始設置:

InteractiveShell.ast_node_interactivity = “last_expr”

使用’i’選項運行python腳本

從命令行運行python腳本的典型方法是:python hello.py。但是,如果在運行相同的腳本時添加-i,例如python -i hello.py,就能提供更多優勢。接下來看看結果如何。

首先,即使程序結束,python也不會退出解釋器。因此,我們可以檢查變量的值和程序中定義的函數的正確性。

其次,我們可以輕鬆地調用python調試器,因為我們仍然在解釋器中:

import pdb

pdb.pm()

這能定位異常發生的位置,然後我們可以處理異常代碼。

自動評論代碼

Ctrl / Cmd + /自動注釋單元格中的選定行,再次命中組合將取消注釋相同的代碼行。

刪除容易恢復難

你有沒有意外刪除過Jupyter notebook中的單元格?如果答案是肯定的,那麼可以掌握這個撤消刪除操作的快捷方式。

如果您刪除了單元格的內容,可以通過按CTRL / CMD + Z輕鬆恢復它。

如果需要恢復整個已刪除的單元格,請按ESC + Z或EDIT撤消刪除單元格。

結論

在本文中,我列出了使用Python和Jupyter notebook時收集的一些小提示。我相信它們會對你有用,能讓你有所收穫,從而實現輕鬆編碼!

如何用python進行數據分析

1、Python數據分析流程及學習路徑

數據分析的流程概括起來主要是:讀寫、處理計算、分析建模和可視化四個部分。在不同的步驟中會用到不同的Python工具。每一步的主題也包含眾多內容。

根據每個部分需要用到的工具,Python數據分析的學習路徑如下:

相關推薦:《Python入門教程》

2、利用Python讀寫數據

Python讀寫數據,主要包括以下內容:

我們以一小段代碼來看:

可見,僅需簡短的兩三行代碼即可實現Python讀入EXCEL文件。

3、利用Python處理和計算數據

在第一步和第二步,我們主要使用的是Python的工具庫NumPy和pandas。其中,NumPy主要用於矢量化的科學計算,pandas主要用於表型數據處理。

4、利用Python分析建模

在分析和建模方面,主要包括Statsmdels和Scikit-learn兩個庫。

Statsmodels允許用戶瀏覽數據,估計統計模型和執行統計測試。可以為不同類型的數據和每個估算器提供廣泛的描述性統計,統計測試,繪圖函數和結果統計列表。

Scikit-leran則是著名的機器學習庫,可以迅速使用各類機器學習算法。

5、利用Python數據可視化

數據可視化是數據工作中的一項重要內容,它可以輔助分析也可以展示結果。

如何解釋spss因子分析的結果

1.KMO和Bartlett的檢驗結果:

首先是KMO的值為0.733,大於閾值0.5,所以說明了變量之間是存在相關性的,符合要求;然後是Bartlett球形檢驗的結果。

在這裡只需要看Sig.這一項,其值為0.000,所以小於0.05。那麼也就是說,這份數據是可以進行因子分析的。

2.公因子方差:

公因子方差表的意思就是,每一個變量都可以用公因子表示,而公因子究竟能表達多少呢,其表達的大小就是公因子方差表中的“提取”。

“提取”的值越大說明變量可以被公因子表達的越好,一般大於0.5即可以說是可以被表達,但是更好的是要求大於0.7才足以說明變量能被公因子表的很合理。

在本例中可以看到,“提取”的值都是大於0.7的,所以變量可以被表達的很不錯。

3.解釋的總方差和碎石圖:

簡單地說,解釋地總方差就是看因子對於變量解釋的貢獻率(可以理解為究竟需要多少因子才能把變量表達為100%)。

這張表只需要看圖中紅框的一列,表示的就是貢獻率,藍框則代表四個因子就可以將變量表達到了91.151%,說明表達的還是不錯的

都要表達到90%以上才可以,否則就要調整因子數據。再看碎石圖,也確實就是四個因子之後折線就變得平緩了。

4.旋轉成分矩陣:

這一張表是用來看哪些變量可以包含在哪些因子里,一列一列地看:第一列,最大的值為0.917和0.772,分別對應的是細顆粒物和可吸入顆粒物。

因此可以把因子歸結為顆粒物。第二列,最大值為0.95對應着二氧化硫,因此可以把因子歸結為硫化物。第三列,最大值為0.962,對應着臭氧。

因此可以把因子歸結為臭氧。第四列,最大值為0.754和0.571,分別對應着二氧化氮和一氧化碳。

擴展資料

因子分析與主成分分析的區別:

主成分分析是試圖尋找原有變量的一個線性組合。這個線性組合方差越大,那麼該組合所攜帶的信息就越多。也就是說,主成分分析就是將原始數據的主要成分放大。

因子分析,它是假設原有變量的背後存在着一個個隱藏的因子,這個因子可以可以包括原有變量中的一個或者幾個,因子分析並不是原有變量的線性組合。

因子分析還是非常好用的一種降維方式的,在SPSS中進行操作十分簡單方便,結果一目了然。python也可以做因子分析,代碼量也並不是很大。

但是,python做因子分析時會有一些功能需要自己根據算法寫,比如說KMO檢驗。

怎樣用 Python 進行數據分析?

做數據分析,首先你要知道有哪些數據分析的方法,然後才是用Python去調用這些方法

那Python有哪些庫類是能做數據分析的,很多,pandas,sklearn等等

所以你首先要裝一個anaconda套件,它包含了幾乎所有的Python數據分析工具,

之後再學怎麼分析。

因子分析要放入中介變量嗎

需要放入的,作為多元統計分析里的降維方法之一,因子分析可以應用於多個場景、如調研、數據建模等場景之中。數據分析中,主成分分析(PCA)是被大家熟知的數據降維方法。而因子分析和主成分分析是非常相似的兩種方法,他們都屬於多元統計分析里的降維方法。但因子分析最大的優點就是:對新的因子能夠進行命名和解釋,使因子具有可解釋性。

因此,因子分析可以作為「需要滿足可解釋性數據建模」的前期數據降維的方法。下文會介紹因子分析的原理邏輯、用途以及Python代碼的實現過程。

擴展資料

一、什麼是因子分析?

因子分析的起源是這樣的,1904年英國的一個心理學家發現學生的英語、法語和古典語成績非常有相關性,他認為這三門課程背後有一個共同的因素驅動,最後將這個因素定義為“語言能力”。基於這個想法,發現很多相關性很高的因素背後有共同的因子驅動,從而定義了因子分析。

因子分析在經濟學、心理學、語言學和社會學等領域經常被用到,一般會探索出背後的影響因素如:語言能力、智力、理解力等。這些因素都是無法直接計算,而是基於背後的調研數據所推算出的公共因子。因此概括下,因子分析就是將存在某些相關性的變量提煉為較少的幾個因子,用這幾個因子去表示原本的變量,也可以根據因子對變量進行分類。

資料來源於網絡若侵權聯繫刪除

原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/276187.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
小藍的頭像小藍
上一篇 2024-12-17 19:38
下一篇 2024-12-19 13:20

相關推薦

  • Python周杰倫代碼用法介紹

    本文將從多個方面對Python周杰倫代碼進行詳細的闡述。 一、代碼介紹 from urllib.request import urlopen from bs4 import Bea…

    編程 2025-04-29
  • Python列表中負數的個數

    Python列表是一個有序的集合,可以存儲多個不同類型的元素。而負數是指小於0的整數。在Python列表中,我們想要找到負數的個數,可以通過以下幾個方面進行實現。 一、使用循環遍歷…

    編程 2025-04-29
  • 如何查看Anaconda中Python路徑

    對Anaconda中Python路徑即conda環境的查看進行詳細的闡述。 一、使用命令行查看 1、在Windows系統中,可以使用命令提示符(cmd)或者Anaconda Pro…

    編程 2025-04-29
  • Python中引入上一級目錄中函數

    Python中經常需要調用其他文件夾中的模塊或函數,其中一個常見的操作是引入上一級目錄中的函數。在此,我們將從多個角度詳細解釋如何在Python中引入上一級目錄的函數。 一、加入環…

    編程 2025-04-29
  • Python計算陽曆日期對應周幾

    本文介紹如何通過Python計算任意陽曆日期對應周幾。 一、獲取日期 獲取日期可以通過Python內置的模塊datetime實現,示例代碼如下: from datetime imp…

    編程 2025-04-29
  • Python字典去重複工具

    使用Python語言編寫字典去重複工具,可幫助用戶快速去重複。 一、字典去重複工具的需求 在使用Python編寫程序時,我們經常需要處理數據文件,其中包含了大量的重複數據。為了方便…

    編程 2025-04-29
  • python強行終止程序快捷鍵

    本文將從多個方面對python強行終止程序快捷鍵進行詳細闡述,並提供相應代碼示例。 一、Ctrl+C快捷鍵 Ctrl+C快捷鍵是在終端中經常用來強行終止運行的程序。當你在終端中運行…

    編程 2025-04-29
  • Python清華鏡像下載

    Python清華鏡像是一個高質量的Python開發資源鏡像站,提供了Python及其相關的開發工具、框架和文檔的下載服務。本文將從以下幾個方面對Python清華鏡像下載進行詳細的闡…

    編程 2025-04-29
  • 蝴蝶優化算法Python版

    蝴蝶優化算法是一種基於仿生學的優化算法,模仿自然界中的蝴蝶進行搜索。它可以應用於多個領域的優化問題,包括數學優化、工程問題、機器學習等。本文將從多個方面對蝴蝶優化算法Python版…

    編程 2025-04-29
  • Python程序需要編譯才能執行

    Python 被廣泛應用於數據分析、人工智能、科學計算等領域,它的靈活性和簡單易學的性質使得越來越多的人喜歡使用 Python 進行編程。然而,在 Python 中程序執行的方式不…

    編程 2025-04-29

發表回復

登錄後才能評論