一、什麼是Polyloss?
Polyloss是一種多標籤多任務學習框架,使用PyTorch實現。在傳統的分類模型中,每個樣本只能被歸類到一個類別中。而在實際應用中,每個樣本可能有多種標籤或任務,如圖像分類中的“車”和“紅色”標籤。Polyloss可以處理這種情況。
值得注意的是,Polyloss比傳統的交叉熵損失函數更為靈活。傳統損失函數假設每個樣本只有一個類別,而Polyloss則假設每個樣本可以歸屬於多個類別。因此,Polyloss可以處理多標籤分類、多任務學習、知識蒸餾等任務。
下面是Polyloss的代碼示例:
import torch.nn.functional as F class Polyloss(nn.Module): def __init__(self, num_classes): super(Polyloss, self).__init__() self.num_classes = num_classes def forward(self, logits, targets): """ Args: logits: [batch_size, num_classes] targets: [batch_size, num_classes] """ loss = 0 for i in range(self.num_classes): loss += F.binary_cross_entropy_with_logits(logits[:, i], targets[:, i]) return loss
二、多標籤分類任務
多標籤分類是指每個樣本可以擁有多個標籤。例如,一張圖像可能既包含“車”標籤,又包含“紅色”標籤。這種任務通常使用Sigmoid函數作為激活函數,輸出結果介於0到1之間。Polyloss可以處理這種情況,對於每個樣本,損失函數會將多個標籤的其它可能性都考慮在內,並做出相應的權衡。
以下是多標籤分類任務的代碼示例:
import torch import torch.nn as nn import torch.optim as optim # 生成數據 data = torch.randn((100, 10)) targets = torch.randint(0, 2, (100, 10)).float() # 定義多標籤分類模型 class MultiLabelModel(nn.Module): def __init__(self): super(MultiLabelModel, self).__init__() self.fc = nn.Linear(10, 10) def forward(self, x): x = self.fc(x) x = torch.sigmoid(x) return x # 訓練模型 model = MultiLabelModel() loss_fn = Polyloss(num_classes=10) optimizer = optim.Adam(model.parameters(), lr=0.1) for i in range(30): optimizer.zero_grad() logits = model(data) loss = loss_fn(logits, targets) loss.backward() optimizer.step() # 測試模型 with torch.no_grad(): logits = model(data) predictions = logits > 0.5 accuracy = (predictions == targets).float().mean() print("Accuracy:", accuracy.item())
三、多任務學習任務
多任務學習是指一種場景,其中模型需要同時解決多個任務。例如,給定一張圖像,模型需要同時判斷其是否包含“車”和/或“行人”,或者給出圖像中物體的類別和位置等多個信息。
以下是多任務學習任務的代碼示例:
import torch import torch.nn as nn import torch.optim as optim # 生成數據 data = torch.randn((100, 10)) task1_targets = torch.randint(0, 2, (100, 1)).float() task2_targets = torch.randn((100, 3)) # 定義多任務學習模型 class MultiTaskModel(nn.Module): def __init__(self): super(MultiTaskModel, self).__init__() self.fc1 = nn.Linear(10, 1) self.fc2 = nn.Linear(10, 3) def forward(self, x): x1 = self.fc1(x) x1 = torch.sigmoid(x1) x2 = self.fc2(x) return x1, x2 # 定義損失函數 loss_fns = [nn.BCELoss(), nn.MSELoss()] def multi_loss(logits, targets, loss_fns): """ Args: logits: tuple (task1_logits, task2_logits) targets: tuple (task1_targets, task2_targets) """ losses = [] for i in range(len(logits)): loss = loss_fns[i](logits[i], targets[i]) losses.append(loss) return sum(losses) # 訓練模型 model = MultiTaskModel() optimizer = optim.Adam(model.parameters(), lr=0.1) for i in range(30): optimizer.zero_grad() task1_logits, task2_logits = model(data) loss = multi_loss((task1_logits, task2_logits), (task1_targets, task2_targets), loss_fns) loss.backward() optimizer.step() # 測試模型 with torch.no_grad(): task1_logits, task2_logits = model(data) task1_predictions = task1_logits > 0.5 task1_accuracy = (task1_predictions == task1_targets).float().mean() print("Task 1 Accuracy:", task1_accuracy.item()) task2_predictions = task2_logits.argmax(dim=1).float() task2_accuracy = (task2_predictions == task2_targets.argmax(dim=1)).float().mean() print("Task 2 Accuracy:", task2_accuracy.item())
四、結語
Polyloss是一種非常有用的多標籤多任務學習框架,在實際應用中可以很好地應對複雜的任務和場景。以上示例代碼可以幫助讀者更好地理解和使用Polyloss。
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/272343.html