本文目錄一覽:
- 1、如何提高python的運行效率
- 2、python運行速度慢怎麼辦
- 3、北大青鳥設計培訓:怎樣才能提高Python運行效率?
- 4、優化Python爬蟲速度的方法有哪些
- 5、優化Python編程的4個妙招
如何提高python的運行效率
竅門一:關鍵代碼使用外部功能包
Python簡化了許多編程任務,但是對於一些時間敏感的任務,它的表現經常不盡人意。使用C/C++或機器語言的外部功能包處理時間敏感任務,可以有效提高應用的運行效率。這些功能包往往依附於特定的平台,因此你要根據自己所用的平台選擇合適的功能包。簡而言之,這個竅門要你犧牲應用的可移植性以換取只有通過對底層主機的直接編程才能獲得的運行效率。以下是一些你可以選擇用來提升效率的功能包:
Cython
Pylnlne
PyPy
Pyrex
這些功能包的用處各有不同。比如說,使用C語言的數據類型,可以使涉及內存操作的任務更高效或者更直觀。Pyrex就能幫助Python延展出這樣的功能。Pylnline能使你在Python應用中直接使用C代碼。內聯代碼是獨立編譯的,但是它把所有編譯文件都保存在某處,並能充分利用C語言提供的高效率。
竅門二:在排序時使用鍵
Python含有許多古老的排序規則,這些規則在你創建定製的排序方法時會佔用很多時間,而這些排序方法運行時也會拖延程序實際的運行速度。最佳的排序方法其實是儘可能多地使用鍵和內置的sort()方法。譬如,拿下面的代碼來說:
import operator
somelist = [(1, 5, , (6, 2, 4), (9, 7, 5)]
somelist.sort(key=operator.itemgetter(0))
somelist
#Output = [(1, 5, , (6, 2, 4), (9, 7, 5)]
somelist.sort(key=operator.itemgetter(1))
somelist
#Output = [(6, 2, 4), (1, 5, , (9, 7, 5)]
somelist.sort(key=operator.itemgetter(2))
somelist
#Output = [(6, 2, 4), (9, 7, 5), (1, 5, ]
在每段例子里,list都是根據你選擇的用作關鍵參數的索引進行排序的。這個方法不僅對數值類型有效,還同樣適用於字符串類型。
竅門三:針對循環的優化
每一種編程語言都強調最優化的循環方案。當使用Python時,你可以藉助豐富的技巧讓循環程序跑得更快。然而,開發者們經常遺忘的一個技巧是:盡量避免在循環中訪問變量的屬性。譬如,拿下面的代碼來說:
lowerlist = [‘this’, ‘is’, ‘lowercase’]
upper = str.upper
upperlist = []
append = upperlist.append
for word in lowerlist:
append(upper(word))
print(upperlist)
#Output = [‘THIS’, ‘IS’, ‘LOWERCASE’]
每次你調用str.upper, Python都會計算這個式子的值。然而,如果你把這個求值賦值給一個變量,那麼求值的結果就能提前知道,Python程序就能運行得更快。因此,關鍵就是儘可能減小Python在循環中的工作量。因為Python解釋執行的特性,在上面的例子中會大大減慢它的速度。
(注意:優化循環的方法還有很多,這只是其中之一。比如,很多程序員會認為,列表推導式是提高循環速度的最佳方法。關鍵在於,優化循環方案是提高應用程序運行速度的上佳選擇。)
竅門四:使用較新的Python版本
如果你在網上搜索Python,你會發現數不盡的信息都是關於如何升級Python版本。通常,每個版本的Python都會包含優化內容,使其運行速度優於之前的版本。但是,限制因素在於,你最喜歡的函數庫有沒有同步更新支持新的Python版本。與其爭論函數庫是否應該更新,關鍵在於新的Python版本是否足夠高效來支持這一更新。
你要保證自己的代碼在新版本里還能運行。你需要使用新的函數庫才能體驗新的Python版本,然後你需要在做出關鍵性的改動時檢查自己的應用。只有當你完成必要的修正之後,你才能體會新版本的不同。
然而,如果你只是確保自己的應用在新版本中可以運行,你很可能會錯過新版本提供的新特性。一旦你決定更新,請分析你的應用在新版本下的表現,並檢查可能出問題的部分,然後優先針對這些部分應用新版本的特性。只有這樣,用戶才能在更新之初就覺察到應用性能的改觀。
竅門五:嘗試多種編碼方法
每次創建應用時都使用同一種編碼方法幾乎無一例外會導致應用的運行效率不盡人意。可以在程序分析時嘗試一些試驗性的辦法。譬如說,在處理字典中的數據項時,你既可以使用安全的方法,先確保數據項已經存在再進行更新,也可以直接對數據項進行更新,把不存在的數據項作為特例分開處理。請看下面第一段代碼:
n = 16
myDict = {}
for i in range(0, n):
char = ‘abcd'[i%4]
if char not in myDict:
myDict[char] = 0
myDict[char] += 1
print(myDict)
當一開始myDict為空時,這段代碼會跑得比較快。然而,通常情況下,myDict填滿了數據,至少填有大部分數據,這時換另一種方法會更有效率。
n = 16
myDict = {}
for i in range(0, n):
char = ‘abcd'[i%4]
try:
myDict[char] += 1
except KeyError:
myDict[char] = 1
print(myDict)
在兩種方法中輸出結果都是一樣的。區別在於輸出是如何獲得的。跳出常規的思維模式,創建新的編程技巧能使你的應用更有效率。
竅門六:交叉編譯你的應用
開發者有時會忘記計算機其實並不理解用來創建現代應用程序的編程語言。計算機理解的是機器語言。為了運行你的應用,你藉助一個應用將你所編的人類可讀的代碼轉換成機器可讀的代碼。有時,你用一種諸如Python這樣的語言編寫應用,再以C++這樣的語言運行你的應用,這在運行的角度來說,是可行的。關鍵在於,你想你的應用完成什麼事情,而你的主機系統能提供什麼樣的資源。
Nuitka是一款有趣的交叉編譯器,能將你的Python代碼轉化成C++代碼。這樣,你就可以在native模式下執行自己的應用,而無需依賴於解釋器程序。你會發現自己的應用運行效率有了較大的提高,但是這會因平台和任務的差異而有所不同。
(注意:Nuitka現在還處在測試階段,所以在實際應用中請多加註意。實際上,當下最好還是把它用於實驗。此外,關於交叉編譯是否為提高運行效率的最佳方法還存在討論的空間。開發者已經使用交叉編譯多年,用來提高應用的速度。記住,每一種解決辦法都有利有弊,在把它用於生產環境之前請仔細權衡。)
在使用交叉編譯器時,記得確保它支持你所用的Python版本。Nuitka支持Python2.6, 2.7, 3.2和3.3。為了讓解決方案生效,你需要一個Python解釋器和一個C++編譯器。Nuitka支持許多C++編譯器,其中包括Microsoft Visual Studio,MinGW 和 Clang/LLVM。
交叉編譯可能造成一些嚴重問題。比如,在使用Nuitka時,你會發現即便是一個小程序也會消耗巨大的驅動空間。因為Nuitka藉助一系列的動態鏈接庫(DDLs)來執行Python的功能。因此,如果你用的是一個資源很有限的系統,這種方法或許不太可行。
python運行速度慢怎麼辦
yxhtest7772017-07-18
關注
分享
 697  2
python運行速度慢怎麼辦?6個Python性能優化技巧

Python是一門非常酷的語言,因為很少的Python代碼可以在短時間內做很多事情,並且,Python很容易就能支持多任務和多重處理。
Python的批評者聲稱Python性能低效、執行緩慢,但實際上並非如此:嘗試以下6個小技巧,可以加快Python應用程序。
關鍵代碼可以依賴於擴展包
Python使許多編程任務變得簡單,但是對於很關鍵的任務並不總是提供最好的性能。使用C、C++或者機器語言擴展包來執行關鍵任務能極大改善性能。這些包是依賴於平台的,也就是說,你必須使用特定的、與你使用的平台相關的包。簡而言之,該解決方案提供了一些應用程序的可移植性,以換取性能,您可以獲得只有通過直接向底層主機編程。
下面這些擴展包你可以考慮添加到你的個人擴展庫中:
Cython
PyInlne
PyPy
Pyrex
這些包有不同的作用和執行方式。例如,Pyrex 讓Python處理一些內存任務變得簡單高效;PyInline可以直接讓你在Python應用程序中使用C代碼,雖然內聯代碼被單獨編譯,但是如果你能高效的利用C代碼,它可以在同一個地方處理每一件事情。
使用關鍵字排序
有很多古老的Python代碼在執行時將花費額外的時間去創建一個自定義的排序函數。最好的排序方式是使用關鍵字和默認的sort()方法。
優化循環
每一種編程語言都強調循環語句的優化,Python也是一樣的。儘管你可以依賴於豐富的技術讓循環運行的更快,然而,開發者經常忽略的一個方法是避免在循環內部使用點拼接字符串。
使用新版本
任何一個在線上搜索Python資料的人都會發現無數關於Python版本遷移的信息。通常,Python每一個版本都針對之前的一個版本做了優化和改進,以讓Python運行的更快。限制因素是你喜歡的函數庫是否也針對Python的新版本做了改進。
當你使用了新的函數庫,獲得了Python的新版本,你需要保證代碼依然能夠運行,檢查應用,修正差異。然後,如果你僅僅是
北大青鳥設計培訓:怎樣才能提高Python運行效率?
python逐漸走入人們的視線,成為熱門編程語言,隨之而來,加入python培訓的准程序員大軍也成為社會熱點。
Python具有許多其他編程語言不具備的優勢,譬如能通過極少量代碼完成許多操作,以及多進程,能夠輕鬆支持多任務處理。
除了多種優勢外,python也有不好的地方,運行較慢,下面電腦培訓為大家介紹6個竅門,可以幫你提高python的運行效率。
1.在排序時使用鍵Python含有許多古老的排序規則,這些規則在你創建定製的排序方法時會佔用很多時間,而這些排序方法運行時也會拖延程序實際的運行速度。
最佳的排序方法其實是儘可能多地使用鍵和內置的sort()方法。
2.交叉編譯你的應用開發者有時會忘記計算機其實並不理解用來創建現代應用程序的編程語言。
計算機理解的是機器語言。
為了運行你的應用,你藉助一個應用將你所編的人類可讀的代碼轉換成機器可讀的代碼。
有時,你用一種諸如Python這樣的語言編寫應用,再以C++這樣的語言運行你的應用,這在運行的角度來說,是可行的。
關鍵在於,你想你的應用完成什麼事情,而你的主機系統能提供什麼樣的資源。
3.關鍵代碼使用外部功能包Python簡化了許多編程任務,但是對於一些時間敏感的任務,它的表現經常不盡人意。
使用C/C++或機器語言的外部功能包處理時間敏感任務,可以有效提高應用的運行效率。
這些功能包往往依附於特定的平台,因此你要根據自己所用的平台選擇合適的功能包。
簡而言之,這個竅門要你犧牲應用的可移植性以換取只有通過對底層主機的直接編程才能獲得的運行效率。
4.針對循環的優化每一種編程語言都強調最優化的循環方案。
當使用Python時,你可以藉助豐富的技巧讓循環程序跑得更快。
然而,開發者們經常遺忘的一個技巧是:盡量避免在循環中訪問變量的屬性。
5.嘗試多種編碼方法每次創建應用時都使用同一種編碼方法幾乎無一例外會導致應用的運行效率不盡人意。
可以在程序分析時嘗試一些試驗性的辦法。
譬如說,在處理字典中的數據項時,你既可以使用安全的方法,先確保數據項已經存在再進行更新,也可以直接對數據項進行更新,把不存在的數據項作為特例分開處理。
6.使用較新的Python版本你要保證自己的代碼在新版本里還能運行。
你需要使用新的函數庫才能體驗新的Python版本,然後你需要在做出關鍵性的改動時檢查自己的應用。
只有當你完成必要的修正之後,你才能體會新版本的不同。
優化Python爬蟲速度的方法有哪些
很多爬蟲工作者都遇到過抓取非常慢的問題,尤其是需要採集大量數據的情況下。那麼如何提高爬蟲採集效率就十分關鍵,那一塊了解如何提高爬蟲採集效率問題。
1.儘可能減少網站訪問次數
單次爬蟲的主要把時間消耗在網絡請求等待響應上面,所以能減少網站訪問就減少網站訪問,既減少自身的工作量,也減輕網站的壓力,還降低被封的風險。
第一步要做的就是流程優化,盡量精簡流程,避免在多個頁面重複獲取。
隨後去重,同樣是十分重要的手段,一般根據url或者id進行唯一性判別,爬過的就不再繼續爬了。
2.分布式爬蟲
即便把各種法子都用盡了,單機單位時間內能爬的網頁數仍是有限的,面對大量的網頁頁面隊列,可計算的時間仍是很長,這種情況下就必須要用機器換時間了,這就是分布式爬蟲。
第一步,分布式並不是爬蟲的本質,也並不是必須的,對於互相獨立、不存在通信的任務就可手動對任務分割,隨後在多個機器上各自執行,減少每台機器的工作量,費時就會成倍減少。
例如有200W個網頁頁面待爬,可以用5台機器各自爬互不重複的40W個網頁頁面,相對來說單機費時就縮短了5倍。
可是如果存在着需要通信的狀況,例如一個變動的待爬隊列,每爬一次這個隊列就會發生變化,即便分割任務也就有交叉重複,因為各個機器在程序運行時的待爬隊列都不一樣了——這種情況下只能用分布式,一個Master存儲隊列,其他多個Slave各自來取,這樣共享一個隊列,取的情況下互斥也不會重複爬取。IPIDEA提供高匿穩定的IP同時更注重用戶隱私的保護,保障用戶的信息安全。含有240+國家地區的ip,支持API批量使用,支持多線程高並發使用。
優化Python編程的4個妙招
1. Pandas.apply() – 特徵工程瑰寶
Pandas 庫已經非常優化了,但是大部分人都沒有發揮它的最大作用。想想它一般會用於數據科學項目中的哪些地方。一般首先能想到的就是特徵工程,即用已有特徵創造新特徵。其中最高效的方法之一就是Pandas.apply(),即Pandas中的apply函數。
在Pandas.apply()中,可以傳遞用戶定義功能並將其應用到Pandas Series的所有數據點中。這個函數是Pandas庫最好的擴展功能之一,它能根據所需條件分隔數據。之後便能將其有效應用到數據處理任務中。
2. Pandas.DataFrame.loc – Python數據操作絕妙技巧
所有和數據處理打交道的數據科學家(差不多所有人了!)都應該學會這個方法。
很多時候,數據科學家需要根據一些條件更新數據集中某列的某些值。Pandas.DataFrame.loc就是此類問題最優的解決方法。
3. Python函數向量化
另一種解決緩慢循環的方法就是將函數向量化。這意味着新建函數會應用於輸入列表,並返回結果數組。在Python中使用向量化能至少迭代兩次,從而加速計算。
事實上,這樣不僅能加速代碼運算,還能讓代碼更加簡潔清晰。
4. Python多重處理
多重處理能使系統同時支持一個以上的處理器。
此處將數據處理分成多個任務,讓它們各自獨立運行。處理龐大的數據集時,即使是apply函數也顯得有些遲緩。
關於優化Python編程的4個妙招,青藤小編就和您分享到這裡了。如果您對python編程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於python編程的技巧及素材等內容,可以點擊本站的其他文章進行學習。
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/259752.html