python讀入csv存入列表,python讀入csv數據

本文目錄一覽:

python如何讀取csv某列XX行數據保存為列表?

list1 = df[[df.columns[2],df.columns[0]]]

list2 = df[[df.columns[2],df.columns[1]]]

python 怎麼把csv中的數據寫入列表?

使用pandas讀取的方法是

pandas.to_csv()

得到的結果是dataframe格式,再用numpy庫轉一下

具體代碼:

import pandas as pd

import numpy as np

file_content = pd.to_csv(r’C:\新建文件夾\result123.csv’)

row = np.array(file_content)

lx = row.tolist()

python 讀取CSV 文件

讀取一個CSV 文件

最全的

一個簡化版本

filepath_or_buffer : str,pathlib。str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a file handle or StringIO)

可以是URL,可用URL類型包括:http, ftp, s3和文件。對於多文件正在準備中

本地文件讀取實例:://localhost/path/to/table.csv

**sep **: str, default ‘,’

指定分隔符。如果不指定參數,則會嘗試使用逗號分隔。分隔符長於一個字符並且不是‘\s+’,將使用python的語法分析器。並且忽略數據中的逗號。正則表達式例子:’\r\t’

**delimiter **: str, default None

定界符,備選分隔符(如果指定該參數,則sep參數失效)

delim_whitespace : boolean, default False.

指定空格(例如’ ‘或者’ ‘)是否作為分隔符使用,等效於設定sep=’\s+’。如果這個參數設定為Ture那麼delimiter 參數失效。

在新版本0.18.1支持

header : int or list of ints, default ‘infer’

指定行數用來作為列名,數據開始行數。如果文件中沒有列名,則默認為0,否則設置為None。如果明確設定header=0 就會替換掉原來存在列名。header參數可以是一個list例如:[0,1,3],這個list表示將文件中的這些行作為列標題(意味着每一列有多個標題),介於中間的行將被忽略掉。

注意:如果skip_blank_lines=True 那麼header參數忽略注釋行和空行,所以header=0表示第一行數據而不是文件的第一行。

**names **: array-like, default None

用於結果的列名列表,如果數據文件中沒有列標題行,就需要執行header=None。默認列表中不能出現重複,除非設定參數mangle_dupe_cols=True。

index_col : int or sequence or False, default None

用作行索引的列編號或者列名,如果給定一個序列則有多個行索引。

如果文件不規則,行尾有分隔符,則可以設定index_col=False 來是的pandas不適用第一列作為行索引。

usecols : array-like, default None

返回一個數據子集,該列表中的值必須可以對應到文件中的位置(數字可以對應到指定的列)或者是字符傳為文件中的列名。例如:usecols有效參數可能是 [0,1,2]或者是 [‘foo’, ‘bar’, ‘baz’]。使用這個參數可以加快加載速度並降低內存消耗。

as_recarray : boolean, default False

不贊成使用:該參數會在未來版本移除。請使用pd.read_csv(…).to_records()替代。

返回一個Numpy的recarray來替代DataFrame。如果該參數設定為True。將會優先squeeze參數使用。並且行索引將不再可用,索引列也將被忽略。

**squeeze **: boolean, default False

如果文件值包含一列,則返回一個Series

**prefix **: str, default None

在沒有列標題時,給列添加前綴。例如:添加‘X’ 成為 X0, X1, …

**mangle_dupe_cols **: boolean, default True

重複的列,將‘X’…’X’表示為‘X.0’…’X.N’。如果設定為false則會將所有重名列覆蓋。

dtype : Type name or dict of column – type, default None

每列數據的數據類型。例如 {‘a’: np.float64, ‘b’: np.int32}

**engine **: {‘c’, ‘python’}, optional

Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

使用的分析引擎。可以選擇C或者是python。C引擎快但是Python引擎功能更加完備。

converters : dict, default None

列轉換函數的字典。key可以是列名或者列的序號。

true_values : list, default None

Values to consider as True

false_values : list, default None

Values to consider as False

**skipinitialspace **: boolean, default False

忽略分隔符後的空白(默認為False,即不忽略).

skiprows : list-like or integer, default None

需要忽略的行數(從文件開始處算起),或需要跳過的行號列表(從0開始)。

skipfooter : int, default 0

從文件尾部開始忽略。 (c引擎不支持)

skip_footer : int, default 0

不推薦使用:建議使用skipfooter ,功能一樣。

nrows : int, default None

需要讀取的行數(從文件頭開始算起)。

na_values : scalar, str, list-like, or dict, default None

一組用於替換NA/NaN的值。如果傳參,需要制定特定列的空值。默認為‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘nan’`.

**keep_default_na **: bool, default True

如果指定na_values參數,並且keep_default_na=False,那麼默認的NaN將被覆蓋,否則添加。

**na_filter **: boolean, default True

是否檢查丟失值(空字符串或者是空值)。對於大文件來說數據集中沒有空值,設定na_filter=False可以提升讀取速度。

verbose : boolean, default False

是否打印各種解析器的輸出信息,例如:“非數值列中缺失值的數量”等。

skip_blank_lines : boolean, default True

如果為True,則跳過空行;否則記為NaN。

**parse_dates **: boolean or list of ints or names or list of lists or dict, default False

infer_datetime_format : boolean, default False

如果設定為True並且parse_dates 可用,那麼pandas將嘗試轉換為日期類型,如果可以轉換,轉換方法並解析。在某些情況下會快5~10倍。

**keep_date_col **: boolean, default False

如果連接多列解析日期,則保持參與連接的列。默認為False。

date_parser : function, default None

用於解析日期的函數,默認使用dateutil.parser.parser來做轉換。Pandas嘗試使用三種不同的方式解析,如果遇到問題則使用下一種方式。

1.使用一個或者多個arrays(由parse_dates指定)作為參數;

2.連接指定多列字符串作為一個列作為參數;

3.每行調用一次date_parser函數來解析一個或者多個字符串(由parse_dates指定)作為參數。

**dayfirst **: boolean, default False

DD/MM格式的日期類型

**iterator **: boolean, default False

返回一個TextFileReader 對象,以便逐塊處理文件。

chunksize : int, default None

文件塊的大小, See IO Tools docs for more information on iterator and chunksize.

compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’

直接使用磁盤上的壓縮文件。如果使用infer參數,則使用 gzip, bz2, zip或者解壓文件名中以‘.gz’, ‘.bz2’, ‘.zip’, or ‘xz’這些為後綴的文件,否則不解壓。如果使用zip,那麼ZIP包中國必須只包含一個文件。設置為None則不解壓。

新版本0.18.1版本支持zip和xz解壓

thousands : str, default None

千分位分割符,如“,”或者“.”

decimal : str, default ‘.’

字符中的小數點 (例如:歐洲數據使用’,‘).

float_precision : string, default None

Specifies which converter the C engine should use for floating-point values. The options are None for the ordinary converter, high for the high-precision converter, and round_trip for the round-trip converter.

指定

**lineterminator **: str (length 1), default None

行分割符,只在C解析器下使用。

**quotechar **: str (length 1), optional

引號,用作標識開始和解釋的字符,引號內的分割符將被忽略。

quoting : int or csv.QUOTE_* instance, default 0

控制csv中的引號常量。可選 QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3)

doublequote : boolean, default True

雙引號,當單引號已經被定義,並且quoting 參數不是QUOTE_NONE的時候,使用雙引號表示引號內的元素作為一個元素使用。

escapechar : str (length 1), default None

當quoting 為QUOTE_NONE時,指定一個字符使的不受分隔符限值。

comment : str, default None

標識着多餘的行不被解析。如果該字符出現在行首,這一行將被全部忽略。這個參數只能是一個字符,空行(就像skip_blank_lines=True)注釋行被header和skiprows忽略一樣。例如如果指定comment=’#’ 解析‘#empty\na,b,c\n1,2,3’ 以header=0 那麼返回結果將是以’a,b,c’作為header。

encoding : str, default None

指定字符集類型,通常指定為’utf-8′. List of Python standard encodings

dialect : str or csv.Dialect instance, default None

如果沒有指定特定的語言,如果sep大於一個字符則忽略。具體查看csv.Dialect 文檔

tupleize_cols : boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

error_bad_lines : boolean, default True

如果一行包含太多的列,那麼默認不會返回DataFrame ,如果設置成false,那麼會將改行剔除(只能在C解析器下使用)。

warn_bad_lines : boolean, default True

如果error_bad_lines =False,並且warn_bad_lines =True 那麼所有的“bad lines”將會被輸出(只能在C解析器下使用)。

**low_memory **: boolean, default True

分塊加載到內存,再低內存消耗中解析。但是可能出現類型混淆。確保類型不被混淆需要設置為False。或者使用dtype 參數指定類型。注意使用chunksize 或者iterator 參數分塊讀入會將整個文件讀入到一個Dataframe,而忽略類型(只能在C解析器中有效)

**buffer_lines **: int, default None

不推薦使用,這個參數將會在未來版本移除,因為他的值在解析器中不推薦使用

compact_ints : boolean, default False

不推薦使用,這個參數將會在未來版本移除

如果設置compact_ints=True ,那麼任何有整數類型構成的列將被按照最小的整數類型存儲,是否有符號將取決於use_unsigned 參數

use_unsigned : boolean, default False

不推薦使用:這個參數將會在未來版本移除

如果整數列被壓縮(i.e. compact_ints=True),指定被壓縮的列是有符號還是無符號的。

memory_map : boolean, default False

如果使用的文件在內存內,那麼直接map文件使用。使用這種方式可以避免文件再次進行IO操作。

ref:

Python csv模塊(讀寫文件)

CSV文件又稱為逗號分隔值文件,是一種通用的、相對簡單的文件格式,用以存儲表格數據,包括數字或者字符。CSV是電子表格和數據庫中最常見的輸入、輸出文件格式。

通過爬蟲將數據抓取的下來,然後把數據保存在文件,或者數據庫中,這個過程稱為數據的持久化存儲。本節介紹Python內置模塊CSV的讀寫操作。

1)csv.writer()

csv模塊中的writer類可用於讀寫序列化的數據,其語法格式如下:

參數說明:

csvfile:必須是支持迭代(Iterator)的對象,可以是文件(file)對象或者列表(list)對象。

dialect:編碼風格,默認為excel的風格,也就是使用逗號,分隔。

fmtparam:格式化參數,用來覆蓋之前dialect對象指定的編碼風格。

如果想同時寫入多行數據,需要使用writerrows()方法,代碼如下所示:

aggs.csv文件內容:

2)csv.DictWriter()

當然也可使用DictWriter類以字典的形式讀寫數據,使用示例如下:

name.csv文件內容,如下所示:

1)csv,reader()

csv模塊中的reader類和DictReader類用於讀取文件中的數據,其中reader()語法格式如下:

2)csv.DictReader()

應用示例如下:

輸出結果:

開課吧廣場-人才學習交流平台

python讀取csv文件中的多列數據為列表

import csv

reader = csv.reader(file(‘name.csv’, ‘rb’))

for line in reader:

    print line

#這個reader 讀出來就是一個列表

原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/207252.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
小藍的頭像小藍
上一篇 2024-12-08 14:21
下一篇 2024-12-08 14:21

相關推薦

  • Python中引入上一級目錄中函數

    Python中經常需要調用其他文件夾中的模塊或函數,其中一個常見的操作是引入上一級目錄中的函數。在此,我們將從多個角度詳細解釋如何在Python中引入上一級目錄的函數。 一、加入環…

    編程 2025-04-29
  • Python列表中負數的個數

    Python列表是一個有序的集合,可以存儲多個不同類型的元素。而負數是指小於0的整數。在Python列表中,我們想要找到負數的個數,可以通過以下幾個方面進行實現。 一、使用循環遍歷…

    編程 2025-04-29
  • Python周杰倫代碼用法介紹

    本文將從多個方面對Python周杰倫代碼進行詳細的闡述。 一、代碼介紹 from urllib.request import urlopen from bs4 import Bea…

    編程 2025-04-29
  • Python計算陽曆日期對應周幾

    本文介紹如何通過Python計算任意陽曆日期對應周幾。 一、獲取日期 獲取日期可以通過Python內置的模塊datetime實現,示例代碼如下: from datetime imp…

    編程 2025-04-29
  • 如何查看Anaconda中Python路徑

    對Anaconda中Python路徑即conda環境的查看進行詳細的闡述。 一、使用命令行查看 1、在Windows系統中,可以使用命令提示符(cmd)或者Anaconda Pro…

    編程 2025-04-29
  • Python清華鏡像下載

    Python清華鏡像是一個高質量的Python開發資源鏡像站,提供了Python及其相關的開發工具、框架和文檔的下載服務。本文將從以下幾個方面對Python清華鏡像下載進行詳細的闡…

    編程 2025-04-29
  • Python程序需要編譯才能執行

    Python 被廣泛應用於數據分析、人工智能、科學計算等領域,它的靈活性和簡單易學的性質使得越來越多的人喜歡使用 Python 進行編程。然而,在 Python 中程序執行的方式不…

    編程 2025-04-29
  • 蝴蝶優化算法Python版

    蝴蝶優化算法是一種基於仿生學的優化算法,模仿自然界中的蝴蝶進行搜索。它可以應用於多個領域的優化問題,包括數學優化、工程問題、機器學習等。本文將從多個方面對蝴蝶優化算法Python版…

    編程 2025-04-29
  • Python字典去重複工具

    使用Python語言編寫字典去重複工具,可幫助用戶快速去重複。 一、字典去重複工具的需求 在使用Python編寫程序時,我們經常需要處理數據文件,其中包含了大量的重複數據。為了方便…

    編程 2025-04-29
  • python強行終止程序快捷鍵

    本文將從多個方面對python強行終止程序快捷鍵進行詳細闡述,並提供相應代碼示例。 一、Ctrl+C快捷鍵 Ctrl+C快捷鍵是在終端中經常用來強行終止運行的程序。當你在終端中運行…

    編程 2025-04-29

發表回復

登錄後才能評論