本文目錄一覽:
- 1、請問你會用python實現貝葉斯網絡了嗎
- 2、如何在Python中實現這五類強大的概率分布
- 3、pylosuite如何構建貝葉斯樹
- 4、python怎麼做大數據分析
- 5、python機器學習方向的第三方庫是什麼
請問你會用python實現貝葉斯網絡了嗎
Bayesian-belief-networks允許你用純Python創建貝葉斯信念網絡和其他圖模型,目前支持四種不同的推理方法。
支持的圖模型
離散變量的貝葉斯信念網絡
有着高斯分布的連續變量的高斯貝葉斯網絡
推理引擎
消息傳遞和聯合樹算法(Junction Tree Algorithm)
和積算法(The Sum Product Algorithm)
MCMC採樣的近似推理
高斯貝葉斯網絡中得Exact Propagation
如何在Python中實現這五類強大的概率分布
R編程語言已經成為統計分析中的事實標準。但在這篇文章中,我將告訴你在Python中實現統計學概念會是如此容易。我要使用Python實現一些離散和連續的概率分布。雖然我不會討論這些分布的數學細節,但我會以鏈接的方式給你一些學習這些統計學概念的好資料。在討論這些概率分布之前,我想簡單說說什麼是隨機變量(random variable)。隨機變量是對一次試驗結果的量化。
舉個例子,一個表示拋硬幣結果的隨機變量可以表示成
Python
1
2
X = {1 如果正面朝上,
2 如果反面朝上}
隨機變量是一個變量,它取值於一組可能的值(離散或連續的),並服從某種隨機性。隨機變量的每個可能取值的都與一個概率相關聯。隨機變量的所有可能取值和與之相關聯的概率就被稱為概率分布(probability distributrion)。
我鼓勵大家仔細研究一下scipy.stats模塊。
概率分布有兩種類型:離散(discrete)概率分布和連續(continuous)概率分布。
離散概率分布也稱為概率質量函數(probability mass function)。離散概率分布的例子有伯努利分布(Bernoulli distribution)、二項分布(binomial distribution)、泊松分布(Poisson distribution)和幾何分布(geometric distribution)等。
連續概率分布也稱為概率密度函數(probability density function),它們是具有連續取值(例如一條實線上的值)的函數。正態分布(normal distribution)、指數分布(exponential distribution)和β分布(beta distribution)等都屬於連續概率分布。
若想了解更多關於離散和連續隨機變量的知識,你可以觀看可汗學院關於概率分布的視頻。
二項分布(Binomial Distribution)
服從二項分布的隨機變量X表示在n個獨立的是/非試驗中成功的次數,其中每次試驗的成功概率為p。
E(X) = np, Var(X) = np(1−p)
如果你想知道每個函數的原理,你可以在IPython筆記本中使用help file命令。 E(X)表示分布的期望或平均值。
鍵入stats.binom?了解二項分布函數binom的更多信息。
二項分布的例子:拋擲10次硬幣,恰好兩次正面朝上的概率是多少?
假設在該試驗中正面朝上的概率為0.3,這意味着平均來說,我們可以期待有3次是硬幣正面朝上的。我定義擲硬幣的所有可能結果為k = np.arange(0,11):你可能觀測到0次正面朝上、1次正面朝上,一直到10次正面朝上。我使用stats.binom.pmf計算每次觀測的概率質量函數。它返回一個含有11個元素的列表(list),這些元素表示與每個觀測相關聯的概率值。
您可以使用.rvs函數模擬一個二項隨機變量,其中參數size指定你要進行模擬的次數。我讓Python返回10000個參數為n和p的二項式隨機變量。我將輸出這些隨機變量的平均值和標準差,然後畫出所有的隨機變量的直方圖。
泊松分布(Poisson Distribution)
一個服從泊松分布的隨機變量X,表示在具有比率參數(rate parameter)λ的一段固定時間間隔內,事件發生的次數。參數λ告訴你該事件發生的比率。隨機變量X的平均值和方差都是λ。
E(X) = λ, Var(X) = λ
泊松分布的例子:已知某路口發生事故的比率是每天2次,那麼在此處一天內發生4次事故的概率是多少?
讓我們考慮這個平均每天發生2起事故的例子。泊松分布的實現和二項分布有些類似,在泊松分布中我們需要指定比率參數。泊松分布的輸出是一個數列,包含了發生0次、1次、2次,直到10次事故的概率。我用結果生成了以下圖片。
你可以看到,事故次數的峰值在均值附近。平均來說,你可以預計事件發生的次數為λ。嘗試不同的λ和n的值,然後看看分布的形狀是怎麼變化的。
現在我來模擬1000個服從泊松分布的隨機變量。
正態分布(Normal Distribution)
正態分布是一種連續分布,其函數可以在實線上的任何地方取值。正態分布由兩個參數描述:分布的平均值μ和方差σ2 。
E(X) = μ, Var(X) = σ2
正態分布的取值可以從負無窮到正無窮。你可以注意到,我用stats.norm.pdf得到正態分布的概率密度函數。
β分布(Beta Distribution)
β分布是一個取值在 [0, 1] 之間的連續分布,它由兩個形態參數α和β的取值所刻畫。
β分布的形狀取決於α和β的值。貝葉斯分析中大量使用了β分布。
當你將參數α和β都設置為1時,該分布又被稱為均勻分布(uniform distribution)。嘗試不同的α和β取值,看看分布的形狀是如何變化的。
指數分布(Exponential Distribution)
指數分布是一種連續概率分布,用於表示獨立隨機事件發生的時間間隔。比如旅客進入機場的時間間隔、打進客服中心電話的時間間隔、中文維基百科新條目出現的時間間隔等等。
我將參數λ設置為0.5,並將x的取值範圍設置為 $[0, 15]$ 。
接着,我在指數分布下模擬1000個隨機變量。scale參數表示λ的倒數。函數np.std中,參數ddof等於標準偏差除以 $n-1$ 的值。
結語(Conclusion)
概率分布就像蓋房子的藍圖,而隨機變量是對試驗事件的總結。我建議你去看看哈佛大學數據科學課程的講座,Joe Blitzstein教授給了一份摘要,包含了你所需要了解的關於統計模型和分布的全部。
pylosuite如何構建貝葉斯樹
方法如下:
在Python中進行基於貝葉斯網絡的推斷和分析可以考慮使用PyBBN包,該包提供的功能支持精確和近似兩種推斷方式。需要說明的是,PyBBN包中的精確推斷要求所有的隨機變量都必須是離散的,而近似推斷則僅支持連續隨機變量的情況。此外,PyBBN包中實現精確推斷所採用的算法是聯結樹(Junction Tree)算法,這是除之前文章中介紹的消去法(參見文獻【1】)之外的另一種貝葉斯網絡推斷算。但無論是何種推斷算法,只要是精確推斷,那麼所得之結果就都是一樣的。PyBBN包中的近似推斷是基於吉布斯採樣算法實現的(關於吉布斯採樣的原理可以參見文獻【2】)。
Pocsuite 是由知道創宇404實驗室打造的一款開源的遠程漏洞測試框架。
python怎麼做大數據分析
數據獲取:公開數據、Python爬蟲外部數據的獲取方式主要有以下兩種。(推薦學習:Python視頻教程)
第一種是獲取外部的公開數據集,一些科研機構、企業、政府會開放一些數據,你需要到特定的網站去下載這些數據。這些數據集通常比較完善、質量相對較高。
另一種獲取外部數據的方式就是爬蟲。
比如你可以通過爬蟲獲取招聘網站某一職位的招聘信息,爬取租房網站上某城市的租房信息,爬取豆瓣評分評分最高的電影列表,獲取知乎點贊排行、網易雲音樂評論排行列表。基於互聯網爬取的數據,你可以對某個行業、某種人群進行分析。
在爬蟲之前你需要先了解一些 Python 的基礎知識:元素(列表、字典、元組等)、變量、循環、函數………
以及,如何用 Python 庫(urlpb、BeautifulSoup、requests、scrapy)實現網頁爬蟲。
掌握基礎的爬蟲之後,你還需要一些高級技巧,比如正則表達式、使用cookie信息、模擬用戶登錄、抓包分析、搭建代理池等等,來應對不同網站的反爬蟲限制。
數據存取:SQL語言
在應對萬以內的數據的時候,Excel對於一般的分析沒有問題,一旦數據量大,就會力不從心,數據庫就能夠很好地解決這個問題。而且大多數的企業,都會以SQL的形式來存儲數據。
SQL作為最經典的數據庫工具,為海量數據的存儲與管理提供可能,並且使數據的提取的效率大大提升。你需要掌握以下技能:
提取特定情況下的數據
數據庫的增、刪、查、改
數據的分組聚合、如何建立多個表之間的聯繫
數據預處理:Python(pandas)
很多時候我們拿到的數據是不幹凈的,數據的重複、缺失、異常值等等,這時候就需要進行數據的清洗,把這些影響分析的數據處理好,才能獲得更加精確地分析結果。
對於數據預處理,學會 pandas (Python包)的用法,應對一般的數據清洗就完全沒問題了。需要掌握的知識點如下:
選擇:數據訪問
缺失值處理:對缺失數據行進行刪除或填充
重複值處理:重複值的判斷與刪除
異常值處理:清除不必要的空格和極端、異常數據
相關操作:描述性統計、Apply、直方圖等
合併:符合各種邏輯關係的合併操作
分組:數據劃分、分別執行函數、數據重組
Reshaping:快速生成數據透視表
概率論及統計學知識
需要掌握的知識點如下:
基本統計量:均值、中位數、眾數、百分位數、極值等
其他描述性統計量:偏度、方差、標準差、顯著性等
其他統計知識:總體和樣本、參數和統計量、ErrorBar
概率分布與假設檢驗:各種分布、假設檢驗流程
其他概率論知識:條件概率、貝葉斯等
有了統計學的基本知識,你就可以用這些統計量做基本的分析了。你可以使用 Seaborn、matplotpb 等(python包)做一些可視化的分析,通過各種可視化統計圖,並得出具有指導意義的結果。
Python 數據分析
掌握回歸分析的方法,通過線性回歸和邏輯回歸,其實你就可以對大多數的數據進行回歸分析,並得出相對精確地結論。這部分需要掌握的知識點如下:
回歸分析:線性回歸、邏輯回歸
基本的分類算法:決策樹、隨機森林……
基本的聚類算法:k-means……
特徵工程基礎:如何用特徵選擇優化模型
調參方法:如何調節參數優化模型
Python 數據分析包:scipy、numpy、scikit-learn等
在數據分析的這個階段,重點了解回歸分析的方法,大多數的問題可以得以解決,利用描述性的統計分析和回歸分析,你完全可以得到一個不錯的分析結論。
當然,隨着你實踐量的增多,可能會遇到一些複雜的問題,你就可能需要去了解一些更高級的算法:分類、聚類。
然後你會知道面對不同類型的問題的時候更適合用哪種算法模型,對於模型的優化,你需要去了解如何通過特徵提取、參數調節來提升預測的精度。
你可以通過 Python 中的 scikit-learn 庫來實現數據分析、數據挖掘建模和分析的全過程。
更多Python相關技術文章,請訪問Python教程欄目進行學習!以上就是小編分享的關於python怎麼做大數據分析的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!
python機器學習方向的第三方庫是什麼
Python開發工程師必知的十大機器學習庫:
一、Scikit-Learn
在機器學習和數據挖掘的應用中,Scikit-Learn是一個功能強大的Python包,我們可以用它進行分類、特徵選擇、特徵提取和聚集。
二、Statsmodels
Statsmodels是另一個聚焦在統計模型上的強大的庫,主要用於預測性和探索性分析,擬合線性模型、進行統計分析或者預測性建模,使用Statsmodels是非常合適的。
三、PyMC
PyMC是做貝葉斯曲線的工具,其包含貝葉斯模型、統計分布和模型收斂的診斷工具,也包含一些層次模型。
四、Gensim
Gensim被稱為人們的主題建模工具,其焦點是狄利克雷劃分及變體,其支持自然語言處理,能將NLP和其他機器學習算法更容易組合在一起,還引用Google的基於遞歸神經網絡的文本表示法word2vec。
五、Orange
Orange是一種帶有圖形用戶界面的庫,在分類、聚集和特徵選擇方法方面,相當齊全,還有交叉驗證的方法。
六、PyMVPA
PyMVPA是一種統計學習庫,包含交叉驗證和診斷工具,但沒有Scikit-learn全面。
七、Theano
Theano是最成熟的深度學習庫,它提供不錯的數據結構表示神經網絡的層,對線性代數來說很高效,與Numpy的數組類似,很多基於Theano的庫都在利用其數據結構,它還支持開箱可用的GPU編程。
八、PyLearn
PyLearn是一個基於Theano的庫,它給Theano引入了模塊化和可配置性,可以通過不同的配置文件來創建神經網絡。
九、Hebel
Hebel是一個帶有GPU支持的神經網絡庫,可以通過YAML文件決定神經網絡的屬性,提供了將神級網絡和代碼友好分離的方式,並快速地運行模型,它是用純Python編寫,是很友好的庫,但由於開發不久,就深度和廣大而言,還有些匱乏!
十、Neurolab
Neurolab是一個API友好的神經網絡庫,其包含遞歸神經網絡實現的不同變體,如果使用RNN,這個庫是同類API中最好的選擇之一。
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/188446.html