包含用python貝葉斯統計試試的詞條

本文目錄一覽:

請問你會用python實現貝葉斯網絡了嗎

Bayesian-belief-networks允許你用純Python創建貝葉斯信念網絡和其他圖模型,目前支持四種不同的推理方法。

支持的圖模型

離散變量的貝葉斯信念網絡

有着高斯分布的連續變量的高斯貝葉斯網絡

推理引擎

消息傳遞和聯合樹算法(Junction Tree Algorithm)

和積算法(The Sum Product Algorithm)

MCMC採樣的近似推理

高斯貝葉斯網絡中得Exact Propagation

如何在Python中實現這五類強大的概率分布

R編程語言已經成為統計分析中的事實標準。但在這篇文章中,我將告訴你在Python中實現統計學概念會是如此容易。我要使用Python實現一些離散和連續的概率分布。雖然我不會討論這些分布的數學細節,但我會以鏈接的方式給你一些學習這些統計學概念的好資料。在討論這些概率分布之前,我想簡單說說什麼是隨機變量(random variable)。隨機變量是對一次試驗結果的量化。

舉個例子,一個表示拋硬幣結果的隨機變量可以表示成

Python

1

2

X = {1 如果正面朝上,

2 如果反面朝上}

隨機變量是一個變量,它取值於一組可能的值(離散或連續的),並服從某種隨機性。隨機變量的每個可能取值的都與一個概率相關聯。隨機變量的所有可能取值和與之相關聯的概率就被稱為概率分布(probability distributrion)。

我鼓勵大家仔細研究一下scipy.stats模塊。

概率分布有兩種類型:離散(discrete)概率分布和連續(continuous)概率分布。

離散概率分布也稱為概率質量函數(probability mass function)。離散概率分布的例子有伯努利分布(Bernoulli distribution)、二項分布(binomial distribution)、泊松分布(Poisson distribution)和幾何分布(geometric distribution)等。

連續概率分布也稱為概率密度函數(probability density function),它們是具有連續取值(例如一條實線上的值)的函數。正態分布(normal distribution)、指數分布(exponential distribution)和β分布(beta distribution)等都屬於連續概率分布。

若想了解更多關於離散和連續隨機變量的知識,你可以觀看可汗學院關於概率分布的視頻。

二項分布(Binomial Distribution)

服從二項分布的隨機變量X表示在n個獨立的是/非試驗中成功的次數,其中每次試驗的成功概率為p。

E(X) = np, Var(X) = np(1−p)

如果你想知道每個函數的原理,你可以在IPython筆記本中使用help file命令。 E(X)表示分布的期望或平均值。

鍵入stats.binom?了解二項分布函數binom的更多信息。

二項分布的例子:拋擲10次硬幣,恰好兩次正面朝上的概率是多少?

假設在該試驗中正面朝上的概率為0.3,這意味着平均來說,我們可以期待有3次是硬幣正面朝上的。我定義擲硬幣的所有可能結果為k = np.arange(0,11):你可能觀測到0次正面朝上、1次正面朝上,一直到10次正面朝上。我使用stats.binom.pmf計算每次觀測的概率質量函數。它返回一個含有11個元素的列表(list),這些元素表示與每個觀測相關聯的概率值。

您可以使用.rvs函數模擬一個二項隨機變量,其中參數size指定你要進行模擬的次數。我讓Python返回10000個參數為n和p的二項式隨機變量。我將輸出這些隨機變量的平均值和標準差,然後畫出所有的隨機變量的直方圖。

泊松分布(Poisson Distribution)

一個服從泊松分布的隨機變量X,表示在具有比率參數(rate parameter)λ的一段固定時間間隔內,事件發生的次數。參數λ告訴你該事件發生的比率。隨機變量X的平均值和方差都是λ。

E(X) = λ, Var(X) = λ

泊松分布的例子:已知某路口發生事故的比率是每天2次,那麼在此處一天內發生4次事故的概率是多少?

讓我們考慮這個平均每天發生2起事故的例子。泊松分布的實現和二項分布有些類似,在泊松分布中我們需要指定比率參數。泊松分布的輸出是一個數列,包含了發生0次、1次、2次,直到10次事故的概率。我用結果生成了以下圖片。

你可以看到,事故次數的峰值在均值附近。平均來說,你可以預計事件發生的次數為λ。嘗試不同的λ和n的值,然後看看分布的形狀是怎麼變化的。

現在我來模擬1000個服從泊松分布的隨機變量。

正態分布(Normal Distribution)

正態分布是一種連續分布,其函數可以在實線上的任何地方取值。正態分布由兩個參數描述:分布的平均值μ和方差σ2 。

E(X) = μ, Var(X) = σ2

正態分布的取值可以從負無窮到正無窮。你可以注意到,我用stats.norm.pdf得到正態分布的概率密度函數。

β分布(Beta Distribution)

β分布是一個取值在 [0, 1] 之間的連續分布,它由兩個形態參數α和β的取值所刻畫。

β分布的形狀取決於α和β的值。貝葉斯分析中大量使用了β分布。

當你將參數α和β都設置為1時,該分布又被稱為均勻分布(uniform distribution)。嘗試不同的α和β取值,看看分布的形狀是如何變化的。

指數分布(Exponential Distribution)

指數分布是一種連續概率分布,用於表示獨立隨機事件發生的時間間隔。比如旅客進入機場的時間間隔、打進客服中心電話的時間間隔、中文維基百科新條目出現的時間間隔等等。

我將參數λ設置為0.5,並將x的取值範圍設置為 $[0, 15]$ 。

接着,我在指數分布下模擬1000個隨機變量。scale參數表示λ的倒數。函數np.std中,參數ddof等於標準偏差除以 $n-1$ 的值。

結語(Conclusion)

概率分布就像蓋房子的藍圖,而隨機變量是對試驗事件的總結。我建議你去看看哈佛大學數據科學課程的講座,Joe Blitzstein教授給了一份摘要,包含了你所需要了解的關於統計模型和分布的全部。

pylosuite如何構建貝葉斯樹

方法如下:

在Python中進行基於貝葉斯網絡的推斷和分析可以考慮使用PyBBN包,該包提供的功能支持精確和近似兩種推斷方式。需要說明的是,PyBBN包中的精確推斷要求所有的隨機變量都必須是離散的,而近似推斷則僅支持連續隨機變量的情況。此外,PyBBN包中實現精確推斷所採用的算法是聯結樹(Junction Tree)算法,這是除之前文章中介紹的消去法(參見文獻【1】)之外的另一種貝葉斯網絡推斷算。但無論是何種推斷算法,只要是精確推斷,那麼所得之結果就都是一樣的。PyBBN包中的近似推斷是基於吉布斯採樣算法實現的(關於吉布斯採樣的原理可以參見文獻【2】)。

Pocsuite 是由知道創宇404實驗室打造的一款開源的遠程漏洞測試框架。

python怎麼做大數據分析

數據獲取:公開數據、Python爬蟲外部數據的獲取方式主要有以下兩種。(推薦學習:Python視頻教程)

第一種是獲取外部的公開數據集,一些科研機構、企業、政府會開放一些數據,你需要到特定的網站去下載這些數據。這些數據集通常比較完善、質量相對較高。

另一種獲取外部數據的方式就是爬蟲。

比如你可以通過爬蟲獲取招聘網站某一職位的招聘信息,爬取租房網站上某城市的租房信息,爬取豆瓣評分評分最高的電影列表,獲取知乎點贊排行、網易雲音樂評論排行列表。基於互聯網爬取的數據,你可以對某個行業、某種人群進行分析。

在爬蟲之前你需要先了解一些 Python 的基礎知識:元素(列表、字典、元組等)、變量、循環、函數………

以及,如何用 Python 庫(urlpb、BeautifulSoup、requests、scrapy)實現網頁爬蟲。

掌握基礎的爬蟲之後,你還需要一些高級技巧,比如正則表達式、使用cookie信息、模擬用戶登錄、抓包分析、搭建代理池等等,來應對不同網站的反爬蟲限制。

數據存取:SQL語言

在應對萬以內的數據的時候,Excel對於一般的分析沒有問題,一旦數據量大,就會力不從心,數據庫就能夠很好地解決這個問題。而且大多數的企業,都會以SQL的形式來存儲數據。

SQL作為最經典的數據庫工具,為海量數據的存儲與管理提供可能,並且使數據的提取的效率大大提升。你需要掌握以下技能:

提取特定情況下的數據

數據庫的增、刪、查、改

數據的分組聚合、如何建立多個表之間的聯繫

數據預處理:Python(pandas)

很多時候我們拿到的數據是不幹凈的,數據的重複、缺失、異常值等等,這時候就需要進行數據的清洗,把這些影響分析的數據處理好,才能獲得更加精確地分析結果。

對於數據預處理,學會 pandas (Python包)的用法,應對一般的數據清洗就完全沒問題了。需要掌握的知識點如下:

選擇:數據訪問

缺失值處理:對缺失數據行進行刪除或填充

重複值處理:重複值的判斷與刪除

異常值處理:清除不必要的空格和極端、異常數據

相關操作:描述性統計、Apply、直方圖等

合併:符合各種邏輯關係的合併操作

分組:數據劃分、分別執行函數、數據重組

Reshaping:快速生成數據透視表

概率論及統計學知識

需要掌握的知識點如下:

基本統計量:均值、中位數、眾數、百分位數、極值等

其他描述性統計量:偏度、方差、標準差、顯著性等

其他統計知識:總體和樣本、參數和統計量、ErrorBar

概率分布與假設檢驗:各種分布、假設檢驗流程

其他概率論知識:條件概率、貝葉斯等

有了統計學的基本知識,你就可以用這些統計量做基本的分析了。你可以使用 Seaborn、matplotpb 等(python包)做一些可視化的分析,通過各種可視化統計圖,並得出具有指導意義的結果。

Python 數據分析

掌握回歸分析的方法,通過線性回歸和邏輯回歸,其實你就可以對大多數的數據進行回歸分析,並得出相對精確地結論。這部分需要掌握的知識點如下:

回歸分析:線性回歸、邏輯回歸

基本的分類算法:決策樹、隨機森林……

基本的聚類算法:k-means……

特徵工程基礎:如何用特徵選擇優化模型

調參方法:如何調節參數優化模型

Python 數據分析包:scipy、numpy、scikit-learn等

在數據分析的這個階段,重點了解回歸分析的方法,大多數的問題可以得以解決,利用描述性的統計分析和回歸分析,你完全可以得到一個不錯的分析結論。

當然,隨着你實踐量的增多,可能會遇到一些複雜的問題,你就可能需要去了解一些更高級的算法:分類、聚類。

然後你會知道面對不同類型的問題的時候更適合用哪種算法模型,對於模型的優化,你需要去了解如何通過特徵提取、參數調節來提升預測的精度。

你可以通過 Python 中的 scikit-learn 庫來實現數據分析、數據挖掘建模和分析的全過程。

更多Python相關技術文章,請訪問Python教程欄目進行學習!以上就是小編分享的關於python怎麼做大數據分析的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!

python機器學習方向的第三方庫是什麼

Python開發工程師必知的十大機器學習庫:

一、Scikit-Learn

在機器學習和數據挖掘的應用中,Scikit-Learn是一個功能強大的Python包,我們可以用它進行分類、特徵選擇、特徵提取和聚集。

二、Statsmodels

Statsmodels是另一個聚焦在統計模型上的強大的庫,主要用於預測性和探索性分析,擬合線性模型、進行統計分析或者預測性建模,使用Statsmodels是非常合適的。

三、PyMC

PyMC是做貝葉斯曲線的工具,其包含貝葉斯模型、統計分布和模型收斂的診斷工具,也包含一些層次模型。

四、Gensim

Gensim被稱為人們的主題建模工具,其焦點是狄利克雷劃分及變體,其支持自然語言處理,能將NLP和其他機器學習算法更容易組合在一起,還引用Google的基於遞歸神經網絡的文本表示法word2vec。

五、Orange

Orange是一種帶有圖形用戶界面的庫,在分類、聚集和特徵選擇方法方面,相當齊全,還有交叉驗證的方法。

六、PyMVPA

PyMVPA是一種統計學習庫,包含交叉驗證和診斷工具,但沒有Scikit-learn全面。

七、Theano

Theano是最成熟的深度學習庫,它提供不錯的數據結構表示神經網絡的層,對線性代數來說很高效,與Numpy的數組類似,很多基於Theano的庫都在利用其數據結構,它還支持開箱可用的GPU編程。

八、PyLearn

PyLearn是一個基於Theano的庫,它給Theano引入了模塊化和可配置性,可以通過不同的配置文件來創建神經網絡。

九、Hebel

Hebel是一個帶有GPU支持的神經網絡庫,可以通過YAML文件決定神經網絡的屬性,提供了將神級網絡和代碼友好分離的方式,並快速地運行模型,它是用純Python編寫,是很友好的庫,但由於開發不久,就深度和廣大而言,還有些匱乏!

十、Neurolab

Neurolab是一個API友好的神經網絡庫,其包含遞歸神經網絡實現的不同變體,如果使用RNN,這個庫是同類API中最好的選擇之一。

原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/188446.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
小藍的頭像小藍
上一篇 2024-11-28 13:30
下一篇 2024-11-28 13:30

相關推薦

  • 如何查看Anaconda中Python路徑

    對Anaconda中Python路徑即conda環境的查看進行詳細的闡述。 一、使用命令行查看 1、在Windows系統中,可以使用命令提示符(cmd)或者Anaconda Pro…

    編程 2025-04-29
  • Python列表中負數的個數

    Python列表是一個有序的集合,可以存儲多個不同類型的元素。而負數是指小於0的整數。在Python列表中,我們想要找到負數的個數,可以通過以下幾個方面進行實現。 一、使用循環遍歷…

    編程 2025-04-29
  • Python計算陽曆日期對應周幾

    本文介紹如何通過Python計算任意陽曆日期對應周幾。 一、獲取日期 獲取日期可以通過Python內置的模塊datetime實現,示例代碼如下: from datetime imp…

    編程 2025-04-29
  • Python中引入上一級目錄中函數

    Python中經常需要調用其他文件夾中的模塊或函數,其中一個常見的操作是引入上一級目錄中的函數。在此,我們將從多個角度詳細解釋如何在Python中引入上一級目錄的函數。 一、加入環…

    編程 2025-04-29
  • Python周杰倫代碼用法介紹

    本文將從多個方面對Python周杰倫代碼進行詳細的闡述。 一、代碼介紹 from urllib.request import urlopen from bs4 import Bea…

    編程 2025-04-29
  • Python程序需要編譯才能執行

    Python 被廣泛應用於數據分析、人工智能、科學計算等領域,它的靈活性和簡單易學的性質使得越來越多的人喜歡使用 Python 進行編程。然而,在 Python 中程序執行的方式不…

    編程 2025-04-29
  • 蝴蝶優化算法Python版

    蝴蝶優化算法是一種基於仿生學的優化算法,模仿自然界中的蝴蝶進行搜索。它可以應用於多個領域的優化問題,包括數學優化、工程問題、機器學習等。本文將從多個方面對蝴蝶優化算法Python版…

    編程 2025-04-29
  • Python字典去重複工具

    使用Python語言編寫字典去重複工具,可幫助用戶快速去重複。 一、字典去重複工具的需求 在使用Python編寫程序時,我們經常需要處理數據文件,其中包含了大量的重複數據。為了方便…

    編程 2025-04-29
  • Python清華鏡像下載

    Python清華鏡像是一個高質量的Python開發資源鏡像站,提供了Python及其相關的開發工具、框架和文檔的下載服務。本文將從以下幾個方面對Python清華鏡像下載進行詳細的闡…

    編程 2025-04-29
  • python強行終止程序快捷鍵

    本文將從多個方面對python強行終止程序快捷鍵進行詳細闡述,並提供相應代碼示例。 一、Ctrl+C快捷鍵 Ctrl+C快捷鍵是在終端中經常用來強行終止運行的程序。當你在終端中運行…

    編程 2025-04-29

發表回復

登錄後才能評論