Python Float NaN

一、簡介

Python float NaN指的是“Not a Number”,即不是數字的浮點數值。通常出現在交叉驗證等機器學習應用場景中。Python浮點數的NaN值是可以通過math.nan或float(‘nan’)方法創建出來的。這個NaN值可以與其他數字進行比較,但是卻不能和自身進行比較。

讓我們來看一個例子:

import math
a = float('nan')
b = float('nan')
c = 1.0
print(a == b) # False
print(a == a) # False
print(math.isnan(a)) # True
print(c > a) # False

二、原理

Python 中的 NaN 與 IEEE 754 標準中的 NaN 實現基本相同。 IEEE 754 中只定義了雙精度(double precision)的 NaN,但使用時需注意單精度(float)的 NaN 實現也與雙精度相同,僅數字精度不同。

IEEE 754 中,NaN 有兩種類型:一種是 quiet NaN(QNaN);一種是 signaling NaN(SNaN)。

QNaN 表示的是未定義或不適用的操作產生的結果。它可以被改變為 SNaN。

SNaN 表示的是嘗試執行結果未定義的操作時產生的 NaN,默認情況下,Python 只會使用 quiet NaN。SNaN 只應該在調試和特定應用中使用。

有一些操作可以產生 NaN,包括:

  • 除以 0
  • 0 除以 0
  • 無窮 / 無窮
  • 無窮 – 無窮
  • 負數的平方根

三、應用

NaN 在機器學習中可用於以下用途:

  • 缺失值的填充,即將列中的缺失值替換為 NaN。
  • 標記異常值,如數據集中的遠離均值的極端值可以被標記為 NaN。
  • 簡化數據處理,當需要忽略一些數據點時,可將其替換為NaN,減少對其他數據的干擾。

四、使用示例

1. 缺失值填充

在數據分析中,經常會遇到一些缺失值需要填充。通過將缺失值替換為 NaN,在分析中可以方便地使用 df.isna() 或 df.isnull() 進行識別。

import pandas as pd
import numpy as np

data = {'name': ['Tom', 'Jerry', 'Mickey', 'Donald'],
        'age': [28, 25, np.nan, 22],
        'salary': [3000, 5000, np.nan, 8000]}

df = pd.DataFrame(data)
print(df)

df.fillna(value=np.nan, inplace=True)
print(df)

2. 標記異常值

有些數據集中可能存在一些離群值,將其用 NaN 標記,可以在分析中忽略這些數據點,並且不會對其他數據造成干擾。

import pandas as pd
import numpy as np

data = {'name': ['Tom', 'Jerry', 'Mickey', 'Donald'],
        'age': [28, 25, 500, 22],
        'salary': [3000, 5000, 10000, 8000]}

df = pd.DataFrame(data)
print(df)

df['age'] = np.where(df['age'] > 100, np.nan, df['age'])
print(df)

3. 簡化數據處理

有些數據點會對分析造成干擾,這時可以將其替換為 NaN,這樣在分析時就不會考慮這些特殊情況,避免對其他數據產生影響。

import pandas as pd
import numpy as np

data = {'name': ['Tom', 'Jerry', 'Mickey', 'Donald'],
        'age': [28, 25, 500, 22],
        'salary': [3000, 5000, 10000, 8000]}

df = pd.DataFrame(data)
print(df)

df['age'] = np.where(df['age'] > 100, np.nan, df['age'])
df['salary'] = np.where(df['salary'] > 10000, np.nan, df['salary'])
print(df)

原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/185029.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
小藍的頭像小藍
上一篇 2024-11-26 05:03
下一篇 2024-11-26 05:03

相關推薦

  • Python中引入上一級目錄中函數

    Python中經常需要調用其他文件夾中的模塊或函數,其中一個常見的操作是引入上一級目錄中的函數。在此,我們將從多個角度詳細解釋如何在Python中引入上一級目錄的函數。 一、加入環…

    編程 2025-04-29
  • Python列表中負數的個數

    Python列表是一個有序的集合,可以存儲多個不同類型的元素。而負數是指小於0的整數。在Python列表中,我們想要找到負數的個數,可以通過以下幾個方面進行實現。 一、使用循環遍歷…

    編程 2025-04-29
  • Python周杰倫代碼用法介紹

    本文將從多個方面對Python周杰倫代碼進行詳細的闡述。 一、代碼介紹 from urllib.request import urlopen from bs4 import Bea…

    編程 2025-04-29
  • Python計算陽曆日期對應周幾

    本文介紹如何通過Python計算任意陽曆日期對應周幾。 一、獲取日期 獲取日期可以通過Python內置的模塊datetime實現,示例代碼如下: from datetime imp…

    編程 2025-04-29
  • 如何查看Anaconda中Python路徑

    對Anaconda中Python路徑即conda環境的查看進行詳細的闡述。 一、使用命令行查看 1、在Windows系統中,可以使用命令提示符(cmd)或者Anaconda Pro…

    編程 2025-04-29
  • Python讀取CSV數據畫散點圖

    本文將從以下方面詳細闡述Python讀取CSV文件並畫出散點圖的方法: 一、CSV文件介紹 CSV(Comma-Separated Values)即逗號分隔值,是一種存儲表格數據的…

    編程 2025-04-29
  • Python實現畫筆方向改變

    本文將介紹如何在Python中實現畫筆方向改變,讓畫筆以中心為軸旋轉。 一、Tkinter庫概述 Tkinter是Python自帶的GUI庫,可用於創建各種GUI應用程序。在Pyt…

    編程 2025-04-29
  • 運維Python和GO應用實踐指南

    本文將從多個角度詳細闡述運維Python和GO的實際應用,包括監控、管理、自動化、部署、持續集成等方面。 一、監控 運維中的監控是保證系統穩定性的重要手段。Python和GO都有強…

    編程 2025-04-29
  • Python清華鏡像下載

    Python清華鏡像是一個高質量的Python開發資源鏡像站,提供了Python及其相關的開發工具、框架和文檔的下載服務。本文將從以下幾個方面對Python清華鏡像下載進行詳細的闡…

    編程 2025-04-29
  • python強行終止程序快捷鍵

    本文將從多個方面對python強行終止程序快捷鍵進行詳細闡述,並提供相應代碼示例。 一、Ctrl+C快捷鍵 Ctrl+C快捷鍵是在終端中經常用來強行終止運行的程序。當你在終端中運行…

    編程 2025-04-29

發表回復

登錄後才能評論