網上醫院python,網上醫院app排名

本文目錄一覽:

人工智能為什麼要用Python?

人工智能的核心算法是完全依賴於C/C++的,而且Python歷史上也一直都是科學計算和數據分析的重要工具。Python雖然是腳本語言,但是因為容易學,迅速成為科學家的工具(MATLAB等也能搞科學計算,但是軟件要錢,且很貴),從而積累了大量的工具庫、架構,人工智能涉及大量的數據計算…

Python數據分析案例-藥品數據分析案例

最近學習了python數據分析的一些基礎知識,有numpy,pandas,matplotlib等,找了一個藥品數據分析的小項目練一下手。

數據分析的步驟一般可以分為6個:

1,明確分析的目的

2,數據準備

3,數據清洗

4,數據分析

5,數據可視化

6,分析報告

數據分析的目的:

通過對朝陽區醫院的藥品銷售數據的分析,了解朝陽醫院的患者的月均消費次數,月均消費金額、客單價以及消費趨勢、需求量前幾位的藥品等。

數據準備

數據是存在Excel中的,可以使用pandas的Excel文件讀取函數將數據讀取到內存中,這裡需要注意的是文件名和Excel中的sheet頁的名字。讀取完數據後可以對數據進行預覽和查看一些基本信息。

通過數據的基本信息可以看出來,總行數6578,但是社保卡號只有6576,其他行只有6577行,說明存在缺失值,這些將在數據清洗中進行處理。

數據清洗

數據清洗過程一般包括:選擇子集、列名重命名、缺失數據處理、數據類型轉換、數據排序及異常值處理等。

(1)選擇子集

在我們獲取到的數據中,可能數據量非常龐大,並不是每一列都有價值都需要分析,這時候就需要從整個數據中選取合適的子集進行分析,這樣就可以提高效率。但是這個案例數據列較少,可以忽略這一步。

(2)列名重命名

在數據分析過程中,有些列名和數據容易混淆或產生歧義,不利於數據分析,這時候需要把列名換成容易理解的名稱,可以採用rename函數實現:

(3)缺失數據處理

通過查看基本信息可以推測“社保卡號”這列存在缺失值,如果不處理這些缺失值會干擾後面的數據分析結果。缺失數據常用的處理方式有:刪除缺失值,一般用於少量缺失值,對整體數據影響不大的情況;平均值填充,對於數值型常用;算法填充等。在本次案例中缺失值商量很少,直接使用dropna函數刪除缺失數據。

(4)數據類型轉換

在導入數據時為了防止導入不進來,會強制所有數據都是object類型,但實際數據分析過程中“銷售數量”,“應收金額”,“實收金額”,這些列需要浮點型(float)數據,“銷售時間”需要改成時間格式,因此需要對數據類型進行轉換,可以使用astype()函數。

(5)異常值處理

查看數據的描述統計信息:我們可以看到最小值出現了負數,原因是銷售數量的值為負數,需要將銷售數量小於0的數據剔除掉。

數據分析及可視化

這裡涉及到的數據可視化的部分並不多所以將數據分析和可視化結合起來,數據分析之前我們應該確定分析的指標。

(1)指標1:月均消費次數   計算:月均消費次數 = 總消費次數 / 月份數

(2)指標2:月均消費金額   計算:月均消費金額 = 總消費金額 / 月份數

(3)指標3:客單價  計算:客單價 = 總消費金額 / 總消費次數

(4)指標4:消費趨勢

每天的消費金額分布情況:一橫軸為時間,縱軸為實收金額畫散點圖。

結論:從散點圖可以看出,每天消費金額在500以下的占絕大多數,個別天存在消費金額很大的情況。

月消費金額變化趨勢,將銷售時間按月聚合分組,然後求出分組後的累計金額,畫出折線圖。

結論:1月,4月,5月,6月的消費金額變化不大,基本持平,2月和3月金額較低,可能是受春節假期影響,部分外來居民回家了,7月份最低是因為數據不全造成的。

藥品銷售情況分析,對“商品名稱”和“銷售數量”這兩列數據進行聚合為Series形式,方便後面統計。

結論:對於銷售量排在前幾位的藥品,醫院應該時刻關注,保證藥品不會短缺而影響患者。

在網上學習Python開發需要多久?

不同培訓學校有不同的培訓周期,一般培訓學校的學習周期為五個月;如果是自學的話,周期少則半年以上,多則一年半左右 ,綜合個人的實際情況來決定,一般培訓Python課程分為5個主要學習階段,分別從Python核心編程、全棧開發、爬蟲開發、人工智能、就業指導依次培訓。

一般會用五周左右的時間學習Python核心編程,通過Python語言基礎知識以及Linux相關知識的學習,了解什麼是數據庫,掌握Python的基礎內容。第二階段會用五周左右的時間學習全棧開發的內容,配合項目講解新的內容,用真實的企業項目,使學員掌握真正的開發流程和技術。第三階段是網絡爬蟲的學習,一般是3周左右。用Scrapy框架和MongoDB實現百萬量數據的爬取;第四階段是人工智能的學習了,大約需要六周。了解行業中流行的數據模型和算法,使用主流人工智能框架進行項目開發最後一階段是就業指導,幫助學院修改簡歷,提供多方面的就業服務。千鋒教育擁有多年Python培訓服務經驗,採用全程面授高品質、高體驗培養模式,擁有國內一體化教學管理及學員服務,助力更多學員實現高薪夢想。

請問怎麼學習Python?

這裡整理了一份Python開發的學習路線,可按照這份大綱來安排學習計劃~

第一階段:專業核心基礎

階段目標:

1. 熟練掌握Python的開發環境與編程核心知識

2. 熟練運用Python面向對象知識進行程序開發

3. 對Python的核心庫和組件有深入理解

4. 熟練應用SQL語句進行數據庫常用操作

5. 熟練運用Linux操作系統命令及環境配置

6. 熟練使用MySQL,掌握數據庫高級操作

7. 能綜合運用所學知識完成項目

知識點:

Python編程基礎、Python面向對象、Python高級進階、MySQL數據庫、Linux操作系統。

1、Python編程基礎,語法規則,函數與參數,數據類型,模塊與包,文件IO,培養紮實的Python編程基本功,同時對Python核心對象和庫的編程有熟練的運用。

2、Python面向對象,核心對象,異常處理,多線程,網絡編程,深入理解面向對象編程,異常處理機制,多線程原理,網絡協議知識,並熟練運用於項目中。

3、類的原理,MetaClass,下劃線的特殊方法,遞歸,魔術方法,反射,迭代器,裝飾器,UnitTest,Mock。深入理解面向對象底層原理,掌握Python開發高級進階技術,理解單元測試技術。

4、數據庫知識,範式,MySQL配置,命令,建庫建表,數據的增刪改查,約束,視圖,存儲過程,函數,觸發器,事務,游標,PDBC,深入理解數據庫管理系統通用知識及MySQL數據庫的使用與管理。為Python後台開發打下堅實基礎。

5、Linux安裝配置,文件目錄操作,VI命令,管理,用戶與權限,環境配置,Docker,Shell編程Linux作為一個主流的服務器操作系統,是每一個開發工程師必須掌握的重點技術,並且能夠熟練運用。

第二階段:PythonWEB開發

階段目標:

1. 熟練掌握Web前端開發技術,HTML,CSS,JavaScript及前端框架

2. 深入理解Web系統中的前後端交互過程與通信協議

3. 熟練運用Web前端和Django和Flask等主流框架完成Web系統開發

4. 深入理解網絡協議,分布式,PDBC,AJAX,JSON等知識

5. 能夠運用所學知識開發一個MiniWeb框架,掌握框架實現原理

6. 使用Web開發框架實現貫穿項目

知識點:

Web前端編程、Web前端高級、Django開發框架、Flask開發框架、Web開發項目實戰。

1、Web頁面元素,布局,CSS樣式,盒模型,JavaScript,JQuery與Bootstrap掌握前端開發技術,掌握JQuery與BootStrap前端開發框架,完成頁面布局與美化。

2、前端開發框架Vue,JSON數據,網絡通信協議,Web服務器與前端交互熟練使用Vue框架,深入理解HTTP網絡協議,熟練使用Swagger,AJAX技術實現前後端交互。

3、自定義Web開發框架,Django框架的基本使用,Model屬性及後端配置,Cookie與Session,模板Templates,ORM數據模型,Redis二級緩存,RESTful,MVC模型掌握Django框架常用API,整合前端技術,開發完整的WEB系統和框架。

4、Flask安裝配置,App對象的初始化和配置,視圖函數的路由,Request對象,Abort函數,自定義錯誤,視圖函數的返回值,Flask上下文和請求鉤子,模板,數據庫擴展包Flask-Sqlalchemy,數據庫遷移擴展包Flask-Migrate,郵件擴展包Flask-Mail。掌握Flask框架的常用API,與Django框架的異同,並能獨立開發完整的WEB系統開發。

第三階段:爬蟲與數據分析

階段目標:

1. 熟練掌握爬蟲運行原理及常見網絡抓包工具使用,能夠對HTTP及HTTPS協議進行抓包分析

2. 熟練掌握各種常見的網頁結構解析庫對抓取結果進行解析和提取

3. 熟練掌握各種常見反爬機制及應對策略,能夠針對常見的反爬措施進行處理

4. 熟練使用商業爬蟲框架Scrapy編寫大型網絡爬蟲進行分布式內容爬取

5. 熟練掌握數據分析相關概念及工作流程

6. 熟練掌握主流數據分析工具Numpy、Pandas和Matplotlib的使用

7. 熟練掌握數據清洗、整理、格式轉換、數據分析報告編寫

8. 能夠綜合利用爬蟲爬取豆瓣網電影評論數據並完成數據分析全流程項目實戰

知識點:

網絡爬蟲開發、數據分析之Numpy、數據分析之Pandas。

1、爬蟲頁面爬取原理、爬取流程、頁面解析工具LXML,Beautifulfoup,正則表達式,代理池編寫和架構、常見反爬措施及解決方案、爬蟲框架結構、商業爬蟲框架Scrapy,基於對爬蟲爬取原理、網站數據爬取流程及網絡協議的分析和了解,掌握網頁解析工具的使用,能夠靈活應對大部分網站的反爬策略,具備獨立完成爬蟲框架的編寫能力和熟練應用大型商業爬蟲框架編寫分布式爬蟲的能力。

2、Numpy中的ndarray數據結構特點、numpy所支持的數據類型、自帶的數組創建方法、算術運算符、矩陣積、自增和自減、通用函數和聚合函數、切片索引、ndarray的向量化和廣播機制,熟悉數據分析三大利器之一Numpy的常見使用,熟悉ndarray數據結構的特點和常見操作,掌握針對不同維度的ndarray數組的分片、索引、矩陣運算等操作。

3、Pandas裡面的三大數據結構,包括Dataframe、Series和Index對象的基本概念和使用,索引對象的更換及刪除索引、算術和數據對齊方法,數據清洗和數據規整、結構轉換,熟悉數據分析三大利器之一Pandas的常見使用,熟悉Pandas中三大數據對象的使用方法,能夠使用Pandas完成數據分析中最重要的數據清洗、格式轉換和數據規整工作、Pandas對文件的讀取和操作方法。

4、matplotlib三層結構體系、各種常見圖表類型折線圖、柱狀圖、堆積柱狀圖、餅圖的繪製、圖例、文本、標線的添加、可視化文件的保存,熟悉數據分析三大利器之一Matplotlib的常見使用,熟悉Matplotlib的三層結構,能夠熟練使用Matplotlib繪製各種常見的數據分析圖表。能夠綜合利用課程中所講的各種數據分析和可視化工具完成股票市場數據分析和預測、共享單車用戶群里數據分析、全球幸福指數數據分析等項目的全程實戰。

第四階段:機器學習與人工智能

階段目標:

1. 理解機器學習相關的基本概念及系統處理流程

2. 能夠熟練應用各種常見的機器學習模型解決監督學習和非監督學習訓練和測試問題,解決回歸、分類問題

3. 熟練掌握常見的分類算法和回歸算法模型,如KNN、決策樹、隨機森林、K-Means等

4. 掌握卷積神經網絡對圖像識別、自然語言識別問題的處理方式,熟悉深度學習框架TF裡面的張量、會話、梯度優化模型等

5. 掌握深度學習卷積神經網絡運行機制,能夠自定義卷積層、池化層、FC層完成圖像識別、手寫字體識別、驗證碼識別等常規深度學習實戰項目

知識點:

1、機器學習常見算法、sklearn數據集的使用、字典特徵抽取、文本特徵抽取、歸一化、標準化、數據主成分分析PCA、KNN算法、決策樹模型、隨機森林、線性回歸及邏輯回歸模型和算法。熟悉機器學習相關基礎概念,熟練掌握機器學習基本工作流程,熟悉特徵工程、能夠使用各種常見機器學習算法模型解決分類、回歸、聚類等問題。

2、Tensorflow相關的基本概念,TF數據流圖、會話、張量、tensorboard可視化、張量修改、TF文件讀取、tensorflow playround使用、神經網絡結構、卷積計算、激活函數計算、池化層設計,掌握機器學習和深度學習之前的區別和練習,熟練掌握深度學習基本工作流程,熟練掌握神經網絡的結構層次及特點,掌握張量、圖結構、OP對象等的使用,熟悉輸入層、卷積層、池化層和全連接層的設計,完成驗證碼識別、圖像識別、手寫輸入識別等常見深度學習項目全程實戰。

Python數據分析案例-藥店銷售數據分析

最近學習了Python數據分析的一些基礎知識,就找了一個藥品數據分析的小項目來練一下手。

數據分析的目的:

本篇文章中,假設以朝陽醫院2018年銷售數據為例,目的是了解朝陽醫院在2018年里的銷售情況,通過對朝陽區醫院的藥品銷售數據的分析,了解朝陽醫院的患者的月均消費次數,月均消費金額、客單價以及消費趨勢、需求量前幾位的藥品等。

數據分析基本過程包括:獲取數據、數據清洗、構建模型、數據可視化以及消費趨勢分析。

數據準備

數據是存在Excel中的,可以使用pandas的Excel文件讀取函數將數據讀取到內存中,這裡需要注意的是文件名和Excel中的sheet頁的名字。讀取完數據後可以對數據進行預覽和查看一些基本信息。

獲取數據:朝陽醫院2018年銷售數據.xlsx(非真實數據) 提取碼: 6xm2

導入原始數據

數據準備

數據是存在Excel中的,可以使用pandas的Excel文件讀取函數將數據讀取到內存中,這裡需要注意的是文件名和Excel中的sheet頁的名字。讀取完數據後可以對數據進行預覽和查看一些基本信息。

獲取數據:朝陽醫院2018年銷售數據.xlsx(非真實數據) 提取碼: 6xm2

導入原始數據

數據清洗

數據清洗過程包括:選擇子集、列名重命名、缺失數據處理、數據類型轉換、數據排序及異常值處理

(1)選擇子集

在我們獲取到的數據中,可能數據量非常龐大,並不是每一列都有價值都需要分析,這時候就需要從整個數據中選取合適的子集進行分析,這樣能從數據中獲取最大價值。在本次案例中不需要選取子集,暫時可以忽略這一步。

(2)列重命名

在數據分析過程中,有些列名和數據容易混淆或產生歧義,不利於數據分析,這時候需要把列名換成容易理解的名稱,可以採用rename函數實現:

(3)缺失值處理

獲取的數據中很有可能存在缺失值,通過查看基本信息可以推測“購葯時間”和“社保卡號”這兩列存在缺失值,如果不處理這些缺失值會干擾後面的數據分析結果。

缺失數據常用的處理方式為刪除含有缺失數據的記錄或者利用算法去補全缺失數據。

在本次案例中為求方便,直接使用dropna函數刪除缺失數據,具體如下:

(4)數據類型轉換

在導入數據時為了防止導入不進來,會強制所有數據都是object類型,但實際數據分析過程中“銷售數量”,“應收金額”,“實收金額”,這些列需要浮點型(float)數據,“銷售時間”需要改成時間格式,因此需要對數據類型進行轉換。

可以使用astype()函數轉為浮點型數據:

在“銷售時間”這一列數據中存在星期這樣的數據,但在數據分析過程中不需要用到,因此要把銷售時間列中日期和星期使用split函數進行分割,分割後的時間,返回的是Series數據類型:

此時時間是沒有按順序排列的,所以還是需要排序一下,排序之後索引會被打亂,所以也需要重置一下索引。

其中by:表示按哪一列進行排序,ascending=True表示升序排列,ascending=False表示降序排列

先查看數據的描述統計信息

通過描述統計信息可以看到,“銷售數量”、“應收金額”、“實收金額”這三列數據的最小值出現了負數,這明顯不符合常理,數據中存在異常值的干擾,因此要對數據進一步處理,以排除異常值的影響:

數據清洗完成後,需要利用數據構建模型(就是計算相應的業務指標),並用可視化的方式呈現結果。

月均消費次數 = 總消費次數 / 月份數(同一天內,同一個人所有消費算作一次消費)

月均消費金額 = 總消費金額 / 月份數

客單價 = 總消費金額 / 總消費次數

從結果可以看出,每天消費總額差異較大,除了個別天出現比較大筆的消費,大部分人消費情況維持在1000-2000元以內。

接下來,我銷售時間先聚合再按月分組進行分析:

結果顯示,7月消費金額最少,這是因為7月份的數據不完整,所以不具參考價值。

1月、4月、5月和6月的月消費金額差異不大.

2月和3月的消費金額迅速降低,這可能是2月和3月處於春節期間,大部分人都回家過年的原因。

d. 分析藥品銷售情況

對“商品名稱”和“銷售數量”這兩列數據進行聚合為Series形式,方便後面統計,並按降序排序:

截取銷售數量最多的前十種藥品,並用條形圖展示結果:

結論:對於銷售量排在前幾位的藥品,醫院應該時刻關注,保證藥品不會短缺而影響患者。得到銷售數量最多的前十種藥品的信息,這些信息也會有助於加強醫院對藥房的管理。

每天的消費金額分布情況:一橫軸為時間,縱軸為實收金額畫散點圖。

結論: 從散點圖可以看出,每天消費金額在500以下的占絕大多數,個別天存在消費金額很大的情況。

/article

原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/182946.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
小藍的頭像小藍
上一篇 2024-11-24 16:25
下一篇 2024-11-24 16:25

相關推薦

  • Python周杰倫代碼用法介紹

    本文將從多個方面對Python周杰倫代碼進行詳細的闡述。 一、代碼介紹 from urllib.request import urlopen from bs4 import Bea…

    編程 2025-04-29
  • 如何查看Anaconda中Python路徑

    對Anaconda中Python路徑即conda環境的查看進行詳細的闡述。 一、使用命令行查看 1、在Windows系統中,可以使用命令提示符(cmd)或者Anaconda Pro…

    編程 2025-04-29
  • Python列表中負數的個數

    Python列表是一個有序的集合,可以存儲多個不同類型的元素。而負數是指小於0的整數。在Python列表中,我們想要找到負數的個數,可以通過以下幾個方面進行實現。 一、使用循環遍歷…

    編程 2025-04-29
  • Python計算陽曆日期對應周幾

    本文介紹如何通過Python計算任意陽曆日期對應周幾。 一、獲取日期 獲取日期可以通過Python內置的模塊datetime實現,示例代碼如下: from datetime imp…

    編程 2025-04-29
  • Python中引入上一級目錄中函數

    Python中經常需要調用其他文件夾中的模塊或函數,其中一個常見的操作是引入上一級目錄中的函數。在此,我們將從多個角度詳細解釋如何在Python中引入上一級目錄的函數。 一、加入環…

    編程 2025-04-29
  • Python清華鏡像下載

    Python清華鏡像是一個高質量的Python開發資源鏡像站,提供了Python及其相關的開發工具、框架和文檔的下載服務。本文將從以下幾個方面對Python清華鏡像下載進行詳細的闡…

    編程 2025-04-29
  • Python字典去重複工具

    使用Python語言編寫字典去重複工具,可幫助用戶快速去重複。 一、字典去重複工具的需求 在使用Python編寫程序時,我們經常需要處理數據文件,其中包含了大量的重複數據。為了方便…

    編程 2025-04-29
  • 蝴蝶優化算法Python版

    蝴蝶優化算法是一種基於仿生學的優化算法,模仿自然界中的蝴蝶進行搜索。它可以應用於多個領域的優化問題,包括數學優化、工程問題、機器學習等。本文將從多個方面對蝴蝶優化算法Python版…

    編程 2025-04-29
  • Python程序需要編譯才能執行

    Python 被廣泛應用於數據分析、人工智能、科學計算等領域,它的靈活性和簡單易學的性質使得越來越多的人喜歡使用 Python 進行編程。然而,在 Python 中程序執行的方式不…

    編程 2025-04-29
  • python強行終止程序快捷鍵

    本文將從多個方面對python強行終止程序快捷鍵進行詳細闡述,並提供相應代碼示例。 一、Ctrl+C快捷鍵 Ctrl+C快捷鍵是在終端中經常用來強行終止運行的程序。當你在終端中運行…

    編程 2025-04-29

發表回復

登錄後才能評論