本文目錄一覽:
- 1、大數據云計算好不好學習?
- 2、我用flume收集文件內容到mysql中,出現這個錯誤,該怎麼解決
- 3、如何用flume實時獲取mysql數據
- 4、大數據網絡工程師主要幹什麼的呀?
- 5、大數據如何入門
- 6、大數據分析應該掌握哪些基礎知識?
大數據云計算好不好學習?
說一下大數據的四個典型的特徵:
數據量大;
數據類型繁多,(結構化、非結構化文本、日誌、視頻、圖片、地理位置等);
商業價值高,但需要在海量數據之上,通過數據分析與機器學習快速的挖掘出來;
處理時效性高,海量數據的處理需求不再局限在離線計算當中。
第一章:Hadoop
在大數據存儲和計算中Hadoop可以算是開山鼻祖,現在大多開源的大數據框架都依賴Hadoop或者與它能很好的兼容。
關於Hadoop,你至少需要搞清楚這些是什麼:
自己學會如何搭建Hadoop,先讓它跑起來。建議先使用安裝包命令行安裝,不要使用管理工具安裝。現在都用Hadoop 2.0。
目錄操作命令;上傳、下載文件命令;提交運行MapReduce示例程序;打開Hadoop WEB界面,查看Job運行狀態,查看Job運行日誌。知道Hadoop的系統日誌在哪裡。
以上完成之後,就應該去了解他們的原理了:
MapReduce:如何分而治之;HDFS:數據到底在哪裡,究竟什麼才是副本;
Yarn到底是什麼,它能幹什麼;NameNode到底在幹些什麼;Resource Manager到底在幹些什麼;
如果有合適的學習網站,視頻就去聽課,如果沒有或者比較喜歡書籍,也可以啃書。當然最好的方法是先去搜索出來這些是幹什麼的,大概有了概念之後,然後再去聽視頻。
第二章:更高效的WordCount
在這裡,一定要學習SQL,它會對你的工作有很大的幫助。
就像是你寫(或者抄)的WordCount一共有幾行代碼?但是你用SQL就非常簡單了,例如:
SELECT word,COUNT(1) FROM wordcount GROUP BY word;
這便是SQL的魅力,編程需要幾十行,甚至上百行代碼,而SQL一行搞定;使用SQL處理分析Hadoop上的數據,方便、高效、易上手、更是趨勢。不論是離線計算還是實時計算,越來越多的大數據處理框架都在積極提供SQL接口。
另外就是SQL On Hadoop之Hive於大數據而言一定要學習的。
什麼是Hive?
官方解釋如下:The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage and queried using SQL syntax。
為什麼說Hive是數據倉庫工具,而不是數據庫工具呢?
有的朋友可能不知道數據倉庫,數據倉庫是邏輯上的概念,底層使用的是數據庫,數據倉庫中的數據有這兩個特點:最全的歷史數據(海量)、相對穩定的;所謂相對穩定,指的是數據倉庫不同於業務系統數據庫,數據經常會被更新,數據一旦進入數據倉庫,很少會被更新和刪除,只會被大量查詢。而Hive,也是具備這兩個特點,因此,Hive適合做海量數據的數據倉庫工具,而不是數據庫工具。
了解了它的作用之後,就是安裝配置Hive的環節,當可以正常進入Hive命令行是,就是安裝配置成功了。
了解Hive是怎麼工作的
學會Hive的基本命令:
創建、刪除表;加載數據到表;下載Hive表的數據;
MapReduce的原理(還是那個經典的題目,一個10G大小的文件,給定1G大小的內存,如何使用Java程序統計出現次數最多的10個單詞及次數);
HDS讀寫數據的流程;向HDFS中PUT數據;從HDFS中下載數據;
自己會寫簡單的MapReduce程序,運行出現問題,知道在哪裡查看日誌;
會寫簡單的Select、Where、group by等SQL語句;
Hive SQL轉換成MapReduce的大致流程;
Hive中常見的語句:創建表、刪除表、往表中加載數據、分區、將表中數據下載到本地;
從上面的學習,你已經了解到,HDFS是Hadoop提供的分布式存儲框架,它可以用來存儲海量數據,MapReduce是Hadoop提供的分布式計算框架,它可以用來統計和分析HDFS上的海量數據,而Hive則是SQL On Hadoop,Hive提供了SQL接口,開發人員只需要編寫簡單易上手的SQL語句,Hive負責把SQL翻譯成MapReduce,提交運行。
此時,你的”大數據平台”是這樣的:那麼問題來了,海量數據如何到HDFS上呢?
第三章:數據採集
把各個數據源的數據採集到Hadoop上。
3.1 HDFS PUT命令
這個在前面你應該已經使用過了。put命令在實際環境中也比較常用,通常配合shell、python等腳本語言來使用。建議熟練掌握。
3.2 HDFS API
HDFS提供了寫數據的API,自己用編程語言將數據寫入HDFS,put命令本身也是使用API。
實際環境中一般自己較少編寫程序使用API來寫數據到HDFS,通常都是使用其他框架封裝好的方法。比如:Hive中的INSERT語句,Spark中的saveAsTextfile等。建議了解原理,會寫Demo。
3.3 Sqoop
Sqoop是一個主要用於Hadoop/Hive與傳統關係型數據庫,Oracle、MySQL、SQLServer等之間進行數據交換的開源框架。就像Hive把SQL翻譯成MapReduce一樣,Sqoop把你指定的參數翻譯成MapReduce,提交到Hadoop運行,完成Hadoop與其他數據庫之間的數據交換。
自己下載和配置Sqoop(建議先使用Sqoop1,Sqoop2比較複雜)。了解Sqoop常用的配置參數和方法。
使用Sqoop完成從MySQL同步數據到HDFS;使用Sqoop完成從MySQL同步數據到Hive表;如果後續選型確定使用Sqoop作為數據交換工具,那麼建議熟練掌握,否則,了解和會用Demo即可。
3.4 Flume
Flume是一個分布式的海量日誌採集和傳輸框架,因為“採集和傳輸框架”,所以它並不適合關係型數據庫的數據採集和傳輸。Flume可以實時的從網絡協議、消息系統、文件系統採集日誌,並傳輸到HDFS上。
因此,如果你的業務有這些數據源的數據,並且需要實時的採集,那麼就應該考慮使用Flume。
下載和配置Flume。使用Flume監控一個不斷追加數據的文件,並將數據傳輸到HDFS;Flume的配置和使用較為複雜,如果你沒有足夠的興趣和耐心,可以先跳過Flume。
3.5 阿里開源的DataX
現在DataX已經是3.0版本,支持很多數據源。
第四章:把Hadoop上的數據搞到別處去
Hive和MapReduce進行分析了。那麼接下來的問題是,分析完的結果如何從Hadoop上同步到其他系統和應用中去呢?其實,此處的方法和第三章基本一致的。
HDFS GET命令:把HDFS上的文件GET到本地。需要熟練掌握。
HDFS API:同3.2.
Sqoop:同3.3.使用Sqoop完成將HDFS上的文件同步到MySQL;使用Sqoop完成將Hive表中的數據同步到MySQL。
如果你已經按照流程認真完整的走了一遍,那麼你應該已經具備以下技能和知識點:
知道如何把已有的數據採集到HDFS上,包括離線採集和實時採集;
知道sqoop是HDFS和其他數據源之間的數據交換工具;
知道flume可以用作實時的日誌採集。
從前面的學習,對於大數據平台,你已經掌握的不少的知識和技能,搭建Hadoop集群,把數據採集到Hadoop上,使用Hive和MapReduce來分析數據,把分析結果同步到其他數據源。
接下來的問題來了,Hive使用的越來越多,你會發現很多不爽的地方,特別是速度慢,大多情況下,明明我的數據量很小,它都要申請資源,啟動MapReduce來執行。
第五章:SQL
其實大家都已經發現Hive後台使用MapReduce作為執行引擎,實在是有點慢。因此SQL On Hadoop的框架越來越多,按我的了解,最常用的按照流行度依次為SparkSQL、Impala和Presto.這三種框架基於半內存或者全內存,提供了SQL接口來快速查詢分析Hadoop上的數據。
我們目前使用的是SparkSQL,至於為什麼用SparkSQL,原因大概有以下吧:使用Spark還做了其他事情,不想引入過多的框架;Impala對內存的需求太大,沒有過多資源部署。
5.1 關於Spark和SparkSQL
什麼是Spark,什麼是SparkSQL。
Spark有的核心概念及名詞解釋。
SparkSQL和Spark是什麼關係,SparkSQL和Hive是什麼關係。
SparkSQL為什麼比Hive跑的快。
5.2 如何部署和運行SparkSQL
Spark有哪些部署模式?
如何在Yarn上運行SparkSQL?
使用SparkSQL查詢Hive中的表。Spark不是一門短時間內就能掌握的技術,因此建議在了解了Spark之後,可以先從SparkSQL入手,循序漸進。
關於Spark和SparkSQL,如果你認真完成了上面的學習和實踐,此時,你的”大數據平台”應該是這樣的。
第六章:數據多次利用
請不要被這個名字所誘惑。其實我想說的是數據的一次採集、多次消費。
在實際業務場景下,特別是對於一些監控日誌,想即時的從日誌中了解一些指標(關於實時計算,後面章節會有介紹),這時候,從HDFS上分析就太慢了,儘管是通過Flume採集的,但Flume也不能間隔很短就往HDFS上滾動文件,這樣會導致小文件特別多。
為了滿足數據的一次採集、多次消費的需求,這裡要說的便是Kafka。
關於Kafka:什麼是Kafka?Kafka的核心概念及名詞解釋。
如何部署和使用Kafka:使用單機部署Kafka,並成功運行自帶的生產者和消費者例子。使用Java程序自己編寫並運行生產者和消費者程序。Flume和Kafka的集成,使用Flume監控日誌,並將日誌數據實時發送至Kafka。
如果你認真完成了上面的學習和實踐,此時,你的”大數據平台”應該是這樣的。
這時,使用Flume採集的數據,不是直接到HDFS上,而是先到Kafka,Kafka中的數據可以由多個消費者同時消費,其中一個消費者,就是將數據同步到HDFS。
如果你已經認真完整的學習了以上的內容,那麼你應該已經具備以下技能和知識點:
為什麼Spark比MapReduce快。
使用SparkSQL代替Hive,更快的運行SQL。
使用Kafka完成數據的一次收集,多次消費架構。
自己可以寫程序完成Kafka的生產者和消費者。
從前面的學習,你已經掌握了大數據平台中的數據採集、數據存儲和計算、數據交換等大部分技能,而這其中的每一步,都需要一個任務(程序)來完成,各個任務之間又存在一定的依賴性,比如,必須等數據採集任務成功完成後,數據計算任務才能開始運行。如果一個任務執行失敗,需要給開發運維人員發送告警,同時需要提供完整的日誌來方便查錯。
第七章:越來越多的分析任務
不僅僅是分析任務,數據採集、數據交換同樣是一個個的任務。這些任務中,有的是定時觸發,有點則需要依賴其他任務來觸發。當平台中有幾百上千個任務需要維護和運行時候,僅僅靠crontab遠遠不夠了,這時便需要一個調度監控系統來完成這件事。調度監控系統是整個數據平台的中樞系統,類似於AppMaster,負責分配和監控任務。
7.1 Apache Oozie
Oozie是什麼?有哪些功能?
Oozie可以調度哪些類型的任務(程序)?
Oozie可以支持哪些任務觸發方式?
安裝配置Oozie。
7.2 其他開源的任務調度系統
Azkaban,light-task-scheduler,Zeus,等等。另外,我這邊是之前單獨開發的任務調度與監控系統,具體請參考《大數據平台任務調度與監控系統》。
第八章:我的數據要實時
在第六章介紹Kafka的時候提到了一些需要實時指標的業務場景,實時基本可以分為絕對實時和准實時,絕對實時的延遲要求一般在毫秒級,准實時的延遲要求一般在秒、分鐘級。對於需要絕對實時的業務場景,用的比較多的是Storm,對於其他准實時的業務場景,可以是Storm,也可以是Spark Streaming。當然,如果可以的話,也可以自己寫程序來做。
8.1 Storm
什麼是Storm?有哪些可能的應用場景?
Storm由哪些核心組件構成,各自擔任什麼角色?
Storm的簡單安裝和部署。
自己編寫Demo程序,使用Storm完成實時數據流計算。
8.2 Spark Streaming
什麼是Spark Streaming,它和Spark是什麼關係?
Spark Streaming和Storm比較,各有什麼優缺點?
使用Kafka + Spark Streaming,完成實時計算的Demo程序。
至此,你的大數據平台底層架構已經成型了,其中包括了數據採集、數據存儲與計算(離線和實時)、數據同步、任務調度與監控這幾大模塊。接下來是時候考慮如何更好的對外提供數據了。
第九章:數據要對外
通常對外(業務)提供數據訪問,大體上包含以下方面。
離線:比如,每天將前一天的數據提供到指定的數據源(DB、FILE、FTP)等;離線數據的提供可以採用Sqoop、DataX等離線數據交換工具。
實時:比如,在線網站的推薦系統,需要實時從數據平台中獲取給用戶的推薦數據,這種要求延時非常低(50毫秒以內)。根據延時要求和實時數據的查詢需要,可能的方案有:HBase、Redis、MongoDB、ElasticSearch等。
OLAP分析:OLAP除了要求底層的數據模型比較規範,另外,對查詢的響應速度要求也越來越高,可能的方案有:Impala、Presto、SparkSQL、Kylin。如果你的數據模型比較規模,那麼Kylin是最好的選擇。
即席查詢:即席查詢的數據比較隨意,一般很難建立通用的數據模型,因此可能的方案有:Impala、Presto、SparkSQL。
這麼多比較成熟的框架和方案,需要結合自己的業務需求及數據平台技術架構,選擇合適的。原則只有一個:越簡單越穩定的,就是最好的。
我用flume收集文件內容到mysql中,出現這個錯誤,該怎麼解決
啟動的時候,不要只輸入mysql,應該: mysql -u root -p /* 按回車後輸入密碼;如果密碼為空,則直接再按回車。這樣才是登陸的root用戶 */
如何用flume實時獲取mysql數據
寫一個SOCKET服務器,取出數據庫里所有的票,根據客戶端買票減去。並通知所有客戶端 客戶端也是SOCKET連上服務器,等服務器的更新信息 這個和聊天差不多原理。
大數據網絡工程師主要幹什麼的呀?
大數據工程師工作內容取決於你工作在數據流的哪一個環節。
從數據上游到數據下游,大致可以分為:
數據採集 – 數據清洗 – 數據存儲 – 數據分析統計 – 數據可視化 等幾個方面
工作內容當然就是使用工具組件(Spark、Flume、Kafka等)或者代碼(Java、Scala等)來實現上面幾個方面的功能。
具體說說吧,
數據採集:
業務系統的埋點代碼時刻會產生一些分散的原始日誌,可以用Flume監控接收這些分散的日誌,實現分散日誌的聚合,即採集。
數據清洗:
原始的日誌,數據是千奇百怪的
一些字段可能會有異常取值,即臟數據。為了保證數據下游的”數據分析統計”能拿到比較高質量的數據,需要對這些記錄進行過濾或者字段數據回填。
一些日誌的字段信息可能是多餘的,下游不需要使用到這些字段做分析,同時也為了節省存儲開銷,需要刪除這些多餘的字段信息。
一些日誌的字段信息可能包含用戶敏感信息,需要做脫敏處理。如用戶姓名只保留姓,名字用’*’字符替換。
數據存儲:
清洗後的數據可以落地入到數據倉庫(Hive),供下游做離線分析。如果下游的”數據分析統計”對實時性要求比較高,則可以把日誌記錄入到kafka。
數據分析統計:
數據分析是數據流的下游,消費來自上游的數據。其實就是從日誌記錄裡頭統計出各種各樣的報表數據,簡單的報表統計可以用sql在kylin或者hive統計,複雜的報表就需要在代碼層面用Spark、Storm做統計分析。一些公司好像會有個叫BI的崗位是專門做這一塊的。
數據可視化:
用數據表格、數據圖等直觀的形式展示上游”數據分析統計”的數據。一般公司的某些決策會參考這些圖表裡頭的數據~
當然,大數據平台(如CDH、FusionInsight等)搭建與維護,也可能是大數據工程師工作內容的一部分喔~
希望對您有所幫助!~
大數據如何入門
首先我們要了解Java語言和Linux操作系統,這兩個是學習大數據的基礎,學習的順序不分前後。
大數據
Java :只要了解一些基礎即可,做大數據不需要很深的Java 技術,學java SE 就相當於有學習大數據基礎。
Linux:因為大數據相關軟件都是在Linux上運行的,所以Linux要學習的紮實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟件的運行環境和網絡環境配置,能少踩很多坑,學會shell就能看懂腳本這樣能更容易理解和配置大數據集群。還能讓你對以後新出的大數據技術學習起來更快。
Hadoop:這是現在流行的大數據處理平台幾乎已經成為大數據的代名詞,所以這個是必學的。Hadoop裡面包括幾個組件HDFS、MapReduce和YARN,HDFS是存儲數據的地方就像我們電腦的硬盤一樣文件都存儲在這個上面,MapReduce是對數據進行處理計算的,它有個特點就是不管多大的數據只要給它時間它就能把數據跑完,但是時間可能不是很快所以它叫數據的批處理。
Zookeeper:這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟件對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。
Mysql:我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql數據庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的權限,修改root的密碼,創建數據庫。這裡主要的是學習SQL的語法,因為hive的語法和這個非常相似。
Sqoop:這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。
Hive:這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapReduce程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。
Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapReduce、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關係。我相信你一定會喜歡上它的,不然你看着那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。
Hbase:這是Hadoop生態體系中的NOSQL數據庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。
Kafka:這是個比較好用的隊列工具,隊列是幹嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你幹嗎給我這麼多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。
Spark:它是用來彌補基於MapReduce處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬盤。特別適合做迭代運算,所以算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。
大數據分析應該掌握哪些基礎知識?
Java基礎語法
· 分支結構if/switch
· 循環結構for/while/do while
· 方法聲明和調用
· 方法重載
· 數組的使用
· 命令行參數、可變參數
IDEA
· IDEA常用設置、常用快捷鍵
· 自定義模板
· 關聯Tomcat
· Web項目案例實操
面向對象編程
· 封裝、繼承、多態、構造器、包
· 異常處理機制
· 抽象類、接口、內部類
· 常有基礎API、集合List/Set/Map
· 泛型、線程的創建和啟動
· 深入集合源碼分析、常見數據結構解析
· 線程的安全、同步和通信、IO流體系
· 反射、類的加載機制、網絡編程
Java8/9/10/11新特性
· Lambda表達式、方法引用
· 構造器引用、StreamAPI
· jShell(JShell)命令
· 接口的私有方法、Optional加強
· 局部變量的類型推斷
· 更簡化的編譯運行程序等
MySQL
· DML語言、DDL語言、DCL語言
· 分組查詢、Join查詢、子查詢、Union查詢、函數
· 流程控制語句、事務的特點、事務的隔離級別等
JDBC
· 使用JDBC完成數據庫增刪改查操作
· 批處理的操作
· 數據庫連接池的原理及應用
· 常見數據庫連接池C3P0、DBCP、Druid等
Maven
· Maven環境搭建
· 本地倉庫中央倉庫
· 創建Web工程
· 自動部署
· 持續繼承
· 持續部署
Linux
· VI/VIM編輯器
· 系統管理操作遠程登錄
· 常用命令
· 軟件包管理企業真題
Shell編程
· 自定義變量與特殊變量
· 運算符
· 條件判斷
· 流程控制
· 系統函數自定義函數
· 常用工具命令
· 面試真題
Hadoop
· Hadoop生態介紹
· Hadoop運行模式
· 源碼編譯
· HDFS文件系統底層詳解
· DNNN工作機制
· HDFS的API操作
· MapReduce框架原理
· 數據壓縮
· Yarn工作機制
· MapReduce案例詳解
· Hadoop參數調優
· HDFS存儲多目錄
· 多磁盤數據均衡
· LZO壓縮
· Hadoop基準測試
Zookeeper
· Zookeeper數據結果
· 內部原理
· 選舉機制
· Stat結構體
· 監聽器
· 分布式安裝部署
· API操作
· 實戰案例
· 面試真題
· 啟動停止腳本
HA+新特性
· HDFS-HA集群配置
Hive
· Hive架構原理
· 安裝部署
· 遠程連接
· 常見命令及基本數據類型
· DML數據操作
· 查詢語句
· Join排序
· 分桶函數
· 壓縮存儲
· 企業級調優
· 實戰案例
· 面試真題
Flume
· Flume架構
· Agent內部原理
· 事務
· 安裝部署
· 實戰案例
· 自定義Source
· 自定義Sink
· Ganglia監控
Kafka
· 消息隊列
· Kafka架構
· 集群部署
· 命令行操作
· 工作流程分析
· 分區分配策略
· 數據寫入流程
· 存儲策略
· 高階API
· 低級API
· 攔截器
· 監控
· 高可靠性存儲
· 數據可靠性和持久性保證
· ISR機制
· Kafka壓測
· 機器數量計算
· 分區數計算
· 啟動停止腳本
DataX
· 安裝
· 原理
· 數據一致性
· 空值處理
· LZO壓縮處理
Scala
· Scala基礎入門
· 函數式編程
· 數據結構
· 面向對象編程
· 模式匹配
· 高階函數
· 特質
· 註解類型參數
· 隱式轉換
· 高級類型
· 案例實操
Spark Core
· 安裝部署
· RDD概述
· 編程模型
· 持久化檢查點機制
· DAG
· 算子詳解
· RDD編程進階
· 累加器廣播變量
Spark SQL
· SparkSQL
· DataFrame
· DataSet
· 自定義UDFUDAF函數
Spark Streaming
· SparkStreaming
· 背壓機制原理
· Receiver和Direct模式原理
· Window原理及案例實操
· 7×24 不間斷運行性能考量
Spark內核優化
· 內核源碼詳解
· 優化詳解
Hbase
· Hbase原理及架構
· 數據讀寫流程
· API使用
· 與Hive和Sqoop集成
· 企業級調優
Presto
· Presto的安裝部署
· 使用Presto執行數倉項目的即席查詢模塊
Ranger2.0
· 權限管理工具Ranger的安裝和使用
Azkaban3.0
· 任務調度工具Azkaban3.0的安裝部署
· 使用Azkaban進行項目任務調度,實現電話郵件報警
Kylin3.0
· Kylin的安裝部署
· Kylin核心思想
· 使用Kylin對接數據源構建模型
Atlas2.0
· 元數據管理工具Atlas的安裝部署
Zabbix
· 集群監控工具Zabbix的安裝部署
DolphinScheduler
· 任務調度工具DolphinScheduler的安裝部署
· 實現數倉項目任務的自動化調度、配置郵件報警
Superset
· 使用SuperSet對數倉項目的計算結果進行可視化展示
Echarts
· 使用Echarts對數倉項目的計算結果進行可視化展示
Redis
· Redis安裝部署
· 五大數據類型
· 總體配置
· 持久化
· 事務
· 發布訂閱
· 主從複製
Canal
· 使用Canal實時監控MySQL數據變化採集至實時項目
Flink
· 運行時架構
· 數據源Source
· Window API
· Water Mark
· 狀態編程
· CEP複雜事件處理
Flink SQL
· Flink SQL和Table API詳細解讀
Flink 內核
· Flink內核源碼講解
· 經典面試題講解
GitGitHub
· 安裝配置
· 本地庫搭建
· 基本操作
· 工作流
· 集中式
ClickHouse
· ClickHouse的安裝部署
· 讀寫機制
· 數據類型
· 執行引擎
DataV
· 使用DataV對實時項目需求計算結果進行可視化展示
sugar
· 結合Springboot對接百度sugar實現數據可視化大屏展示
Maxwell
· 使用Maxwell實時監控MySQL數據變化採集至實時項目
ElasticSearch
· ElasticSearch索引基本操作、案例實操
Kibana
· 通過Kibana配置可視化分析
Springboot
· 利用Springboot開發可視化接口程序
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/157282.html