本文目錄一覽:
- 1、服務器上有個2萬條記錄的MySQL數據表,讀取並寫入本地數據庫,怎麼這麼慢啊?
- 2、如何用sql語句實現從服務器上MySQL數據庫導出數據至本地
- 3、怎樣獲取 mysql數據庫服務器地址
- 4、如何把服務器上的mysql所有數據庫複製到本地
- 5、mysql服務器讀取速度優化
- 6、雲享主機服務器!本地怎麼連接服務器上的MySql數據庫?
服務器上有個2萬條記錄的MySQL數據表,讀取並寫入本地數據庫,怎麼這麼慢啊?
一次多讀些記錄是對的,還有就是你每次讀記錄時創建的對象要注意清理,關閉或是重用. 要不然這個程序就越來越佔用資源
如何用sql語句實現從服務器上MySQL數據庫導出數據至本地
導出進用網絡路徑試一下。
你在你本地建一個共享目錄,然後導出服務器的數據時,指定網絡目錄。
怎樣獲取 mysql數據庫服務器地址
你要用什麼遠程管理?一般mysql都是用phpmyadmin管理的,也就是一個PHP程序,你在LOCALHOST上裝上PHPMYADMIN就可以管理了啊,遠程在線式的,MYSQL不像SQL SERVER,通過本地程序化管理.
如何把服務器上的mysql所有數據庫複製到本地
這就要看什麼數據庫了,如果是mysql 直接下載 mysql/data/數據庫名 裡面的所有文件 .myi .myd 等文件。然後放到本地電腦上的mysql數據庫的相應位置,然後重啟mysql就行。具體還是看什麼數據庫
mysql服務器讀取速度優化
在開始演示之前,我們先介紹下兩個概念。
概念一,數據的可選擇性基數,也就是常說的cardinality值。
查詢優化器在生成各種執行計劃之前,得先從統計信息中取得相關數據,這樣才能估算每步操作所涉及到的記錄數,而這個相關數據就是cardinality。簡單來說,就是每個值在每個字段中的唯一值分布狀態。
比如表t1有100行記錄,其中一列為f1。f1中唯一值的個數可以是100個,也可以是1個,當然也可以是1到100之間的任何一個數字。這裡唯一值越的多少,就是這個列的可選擇基數。
那看到這裡我們就明白了,為什麼要在基數高的字段上建立索引,而基數低的的字段建立索引反而沒有全表掃描來的快。當然這個只是一方面,至於更深入的探討就不在我這篇探討的範圍了。
概念二,關於HINT的使用。
這裡我來說下HINT是什麼,在什麼時候用。
HINT簡單來說就是在某些特定的場景下人工協助MySQL優化器的工作,使她生成最優的執行計劃。一般來說,優化器的執行計劃都是最優化的,不過在某些特定場景下,執行計劃可能不是最優化。
比如:表t1經過大量的頻繁更新操作,(UPDATE,DELETE,INSERT),cardinality已經很不準確了,這時候剛好執行了一條SQL,那麼有可能這條SQL的執行計劃就不是最優的。為什麼說有可能呢?
來看下具體演示
譬如,以下兩條SQL,
A:
select * from t1 where f1 = 20;
B:
select * from t1 where f1 = 30;
如果f1的值剛好頻繁更新的值為30,並且沒有達到MySQL自動更新cardinality值的臨界值或者說用戶設置了手動更新又或者用戶減少了sample page等等,那麼對這兩條語句來說,可能不準確的就是B了。
這裡順帶說下,MySQL提供了自動更新和手動更新表cardinality值的方法,因篇幅有限,需要的可以查閱手冊。
那回到正題上,MySQL 8.0 帶來了幾個HINT,我今天就舉個index_merge的例子。
示例表結構:
mysql desc t1;+————+————–+——+—–+———+—————-+| Field | Type | Null | Key | Default | Extra |+————+————–+——+—–+———+—————-+| id | int(11) | NO | PRI | NULL | auto_increment || rank1 | int(11) | YES | MUL | NULL | || rank2 | int(11) | YES | MUL | NULL | || log_time | datetime | YES | MUL | NULL | || prefix_uid | varchar(100) | YES | | NULL | || desc1 | text | YES | | NULL | || rank3 | int(11) | YES | MUL | NULL | |+————+————–+——+—–+———+—————-+7 rows in set (0.00 sec)
表記錄數:
mysql select count(*) from t1;+———-+| count(*) |+———-+| 32768 |+———-+1 row in set (0.01 sec)
這裡我們兩條經典的SQL:
SQL C:
select * from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;
SQL D:
select * from t1 where rank1 =100 and rank2 =100 and rank3 =100;
表t1實際上在rank1,rank2,rank3三列上分別有一個二級索引。
那我們來看SQL C的查詢計劃。
顯然,沒有用到任何索引,掃描的行數為32034,cost為3243.65。
mysql explain format=json select * from t1 where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: { “query_block”: { “select_id”: 1, “cost_info”: { “query_cost”: “3243.65” }, “table”: { “table_name”: “t1”, “access_type”: “ALL”, “possible_keys”: [ “idx_rank1”, “idx_rank2”, “idx_rank3” ], “rows_examined_per_scan”: 32034, “rows_produced_per_join”: 115, “filtered”: “0.36”, “cost_info”: { “read_cost”: “3232.07”, “eval_cost”: “11.58”, “prefix_cost”: “3243.65”, “data_read_per_join”: “49K” }, “used_columns”: [ “id”, “rank1”, “rank2”, “log_time”, “prefix_uid”, “desc1”, “rank3” ], “attached_condition”: “((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))” } }}1 row in set, 1 warning (0.00 sec)
我們加上hint給相同的查詢,再次看看查詢計劃。
這個時候用到了index_merge,union了三個列。掃描的行數為1103,cost為441.09,明顯比之前的快了好幾倍。
mysql explain format=json select /*+ index_merge(t1) */ * from t1 where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: { “query_block”: { “select_id”: 1, “cost_info”: { “query_cost”: “441.09” }, “table”: { “table_name”: “t1”, “access_type”: “index_merge”, “possible_keys”: [ “idx_rank1”, “idx_rank2”, “idx_rank3” ], “key”: “union(idx_rank1,idx_rank2,idx_rank3)”, “key_length”: “5,5,5”, “rows_examined_per_scan”: 1103, “rows_produced_per_join”: 1103, “filtered”: “100.00”, “cost_info”: { “read_cost”: “330.79”, “eval_cost”: “110.30”, “prefix_cost”: “441.09”, “data_read_per_join”: “473K” }, “used_columns”: [ “id”, “rank1”, “rank2”, “log_time”, “prefix_uid”, “desc1”, “rank3” ], “attached_condition”: “((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))” } }}1 row in set, 1 warning (0.00 sec)
我們再看下SQL D的計劃:
不加HINT,
mysql explain format=json select * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: { “query_block”: { “select_id”: 1, “cost_info”: { “query_cost”: “534.34” }, “table”: { “table_name”: “t1”, “access_type”: “ref”, “possible_keys”: [ “idx_rank1”, “idx_rank2”, “idx_rank3” ], “key”: “idx_rank1”, “used_key_parts”: [ “rank1” ], “key_length”: “5”, “ref”: [ “const” ], “rows_examined_per_scan”: 555, “rows_produced_per_join”: 0, “filtered”: “0.07”, “cost_info”: { “read_cost”: “478.84”, “eval_cost”: “0.04”, “prefix_cost”: “534.34”, “data_read_per_join”: “176” }, “used_columns”: [ “id”, “rank1”, “rank2”, “log_time”, “prefix_uid”, “desc1”, “rank3” ], “attached_condition”: “((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100))” } }}1 row in set, 1 warning (0.00 sec)
加了HINT,
mysql explain format=json select /*+ index_merge(t1)*/ * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: { “query_block”: { “select_id”: 1, “cost_info”: { “query_cost”: “5.23” }, “table”: { “table_name”: “t1”, “access_type”: “index_merge”, “possible_keys”: [ “idx_rank1”, “idx_rank2”, “idx_rank3” ], “key”: “intersect(idx_rank1,idx_rank2,idx_rank3)”, “key_length”: “5,5,5”, “rows_examined_per_scan”: 1, “rows_produced_per_join”: 1, “filtered”: “100.00”, “cost_info”: { “read_cost”: “5.13”, “eval_cost”: “0.10”, “prefix_cost”: “5.23”, “data_read_per_join”: “440” }, “used_columns”: [ “id”, “rank1”, “rank2”, “log_time”, “prefix_uid”, “desc1”, “rank3” ], “attached_condition”: “((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100) and (`ytt`.`t1`.`rank1` = 100))” } }}1 row in set, 1 warning (0.00 sec)
對比下以上兩個,加了HINT的比不加HINT的cost小了100倍。
總結下,就是說表的cardinality值影響這張的查詢計劃,如果這個值沒有正常更新的話,就需要手工加HINT了。相信MySQL未來的版本會帶來更多的HINT。
雲享主機服務器!本地怎麼連接服務器上的MySql數據庫?
1、服務器Mysql默認是禁止遠程IP登錄的
2、為了安全
3、如果你要使用的話,需要把mysql的權限設置下
– 更新用戶
use mysql;
update user set host = “%” where user = “root”;
flush privileges;
原創文章,作者:ECAM,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/146281.html