本文目錄一覽:
- 1、python並發編程-進程池
- 2、python簡單的並發問題
- 3、如何在Python中編寫並發程序
- 4、python高並發怎麼解決
- 5、如何優雅的編寫Python並發程序
- 6、Python進程之並行與並發的區別
python並發編程-進程池
在利用Python進行系統管理的時候,特別是同時操作多個文件目錄,或者遠程控制多台主機,並行操作可以節約大量的時間。多進程是實現並發的手段之一,需要注意的問題是:
例如當被操作對象數目不大時,可以直接利用multiprocessing中的Process動態成生多個進程,十幾個還好,但如果是上百個,上千個。。。手動的去限制進程數量卻又太過繁瑣,此時可以發揮進程池的功效。
我們就可以通過維護一個進程池來控制進程數目,比如httpd的進程模式,規定最小進程數和最大進程數..
ps: 對於遠程過程調用的高級應用程序而言,應該使用進程池,Pool可以提供指定數量的進程,供用戶調用,當有新的請求提交到pool中時,如果池還沒有滿,那麼就會創建一個新的進程用來執行該請求;但如果池中的進程數已經達到規定最大值,那麼該請求就會等待,直到池中有進程結束,就重用進程池中的進程。
創建進程池的類:如果指定numprocess為3,則進程池會從無到有創建三個進程,然後自始至終使用這三個進程去執行所有任務,不會開啟其他進程
參數介紹:
方法介紹:
主要方法:
其他方法(了解部分)
應用:
發現:並發開啟多個客戶端,服務端同一時間只有3個不同的pid,幹掉一個客戶端,另外一個客戶端才會進來,被3個進程之一處理
回調函數:
需要回調函數的場景:進程池中任何一個任務一旦處理完了,就立即告知主進程:我好了額,你可以處理我的結果了。主進程則調用一個函數去處理該結果,該函數即回調函數
我們可以把耗時間(阻塞)的任務放到進程池中,然後指定回調函數(主進程負責執行),這樣主進程在執行回調函數時就省去了I/O的過程,直接拿到的是任務的結果。
如果在主進程中等待進程池中所有任務都執行完畢後,再統一處理結果,則無需回調函數
python簡單的並發問題
#!/usr/bin/envpython#-*-coding:utf-8-*-#author:ChanghuaGongimporttime,threading#fromurllib.requestimportRequest,urlopenpy3#fromurllib.errorimportURLErrorpy3importurllib2#URLreq=urllib2.Request(‘
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# author: Changhua Gong
import time,threading
# from urllib.request import Request, urlopen py3
# from urllib.error import URLError py3
import urllib2
#URL
req = urllib2.Request(”)
#
rule = {0:500,1:30}
”’
Rule規則:0:50,第一次運行不睡眠即為0,直接並發50次;1:20,第二秒,相當於睡眠1秒,然後並發20次,
如第三秒需並發500次,則rule = {0:50,1:20,1:500}
”’
#Open url
def geturl():
time_b = time.time()
try:
response = urllib2.urlopen(req)
print(response.read().decode(“utf-8”)) # 打印輸出內容
except urllib2.URLError as e:
if hasattr(e, ‘reason’):
print(‘We failed to reach a server.’)
print(‘Reason: ‘, e.reason)
elif hasattr(e, ‘code’):
print(‘The server couldn/’t fulfill the request.’)
print(‘Error code: ‘, e.code)
time_e = time.time()
print(“Thread %s runned for %ss” % (threading.current_thread().name, (time_e – time_b))) #線程訪問時效
if __name__==’__main__’:
for k in rule:
time.sleep(k)
for i in range(rule[k]):
t = threading.Thread(target=geturl)
t.start()
如何在Python中編寫並發程序
多進程/多線程+Queue
一般來說,在Python中編寫並發程序的經驗是:計算密集型任務使用多進程,IO密集型任務使用多進程或者多線程.另外,因為涉及到資源共享,所以需要同步鎖等一系列麻煩的步驟,代碼編寫不直觀.另外一種好的思路是利用多進程/多線程+Queue的方法,可以避免加鎖這樣麻煩低效的方式.
現在在Python2中利用Queue+多進程的方法來處理一個IO密集型任務.
假設現在需要下載多個網頁內容並進行解析,單進程的方式效率很低,所以使用多進程/多線程勢在必行.
我們可以先初始化一個tasks隊列,裡面將要存儲的是一系列dest_url,同時開啟4個進程向tasks中取任務然後執行,處理結果存儲在一個results隊列中,最後對results中的結果進行解析.最後關閉兩個隊列.
下面是一些主要的邏輯代碼.
# -*- coding:utf-8 -*-
#IO密集型任務
#多個進程同時下載多個網頁
#利用Queue+多進程
#由於是IO密集型,所以同樣可以利用threading模塊
import multiprocessing
def main():
tasks = multiprocessing.JoinableQueue()
results = multiprocessing.Queue()
cpu_count = multiprocessing.cpu_count() #進程數目==CPU核數目
create_process(tasks, results, cpu_count) #主進程馬上創建一系列進程,但是由於阻塞隊列tasks開始為空,副進程全部被阻塞
add_tasks(tasks) #開始往tasks中添加任務
parse(tasks, results) #最後主進程等待其他線程處理完成結果
def create_process(tasks, results, cpu_count):
for _ in range(cpu_count):
p = multiprocessing.Process(target=_worker, args=(tasks, results)) #根據_worker創建對應的進程
p.daemon = True #讓所有進程可以隨主進程結束而結束
p.start() #啟動
def _worker(tasks, results):
while True: #因為前面所有線程都設置了daemon=True,故不會無限循環
try:
task = tasks.get() #如果tasks中沒有任務,則阻塞
result = _download(task)
results.put(result) #some exceptions do not handled
finally:
tasks.task_done()
def add_tasks(tasks):
for url in get_urls(): #get_urls() return a urls_list
tasks.put(url)
def parse(tasks, results):
try:
tasks.join()
except KeyboardInterrupt as err:
print “Tasks has been stopped!”
print err
while not results.empty():
_parse(results)
if __name__ == ‘__main__’:
main()
利用Python3中的concurrent.futures包
在Python3中可以利用concurrent.futures包,編寫更加簡單易用的多線程/多進程代碼.其使用感覺和Java的concurrent框架很相似(借鑒?)
比如下面的簡單代碼示例
def handler():
futures = set()
with concurrent.futures.ProcessPoolExecutor(max_workers=cpu_count) as executor:
for task in get_task(tasks):
future = executor.submit(task)
futures.add(future)
def wait_for(futures):
try:
for future in concurrent.futures.as_completed(futures):
err = futures.exception()
if not err:
result = future.result()
else:
raise err
except KeyboardInterrupt as e:
for future in futures:
future.cancel()
print “Task has been canceled!”
print e
return result
總結
要是一些大型Python項目也這般編寫,那麼效率也太低了.在Python中有許多已有的框架使用,使用它們起來更加高效.
但是自己的一些”小打小鬧”的程序這樣來編寫還是不錯的.:)
python高並發怎麼解決
某個時間段內,數據湧來,這就是並發。如果數據量很大,就是高並發
高並發的解決方法:
1、隊列、緩衝區
假設只有一個窗口,陸續湧入食堂的人,排隊打菜是比較好的方式
所以,排隊(隊列)是一種天然解決並發的辦法
排隊就是把人排成 隊列,先進先出,解決了資源使用的問題
排成的隊列,其實就是一個緩衝地帶,就是 緩衝區
假設女生優先,每次都從這個隊伍中優先選出女生出來先打飯,這就是 優先隊列
例如queue模塊的類Queue、LifoQueue、PriorityQueue(小頂堆實現)
2、爭搶
只開一個窗口,有可能沒有秩序,也就是誰擠進去就給誰打飯
擠到窗口的人佔據窗口,直到打到飯菜離開
其他人繼續爭搶,會有一個人佔據着窗口,可以視為鎖定窗口,窗口就不能為其他人提供服務了。
這是一種鎖機制
誰搶到資源就上鎖,排他性的鎖,其他人只能等候
爭搶也是一種高並發解決方案,但是,這樣可能不好,因為有可能有人很長時間搶不到
3、預處理
如果排長隊的原因,是由於每個人打菜等候時間長,因為要吃的菜沒有,需要現做,沒打着飯不走開,鎖定着窗口
食堂可以提前統計大多數人最愛吃的菜品,將最愛吃的80%的熱門菜,提前做好,保證供應,20%的冷門菜,現做
這樣大多數人,就算鎖定窗口,也很快打到飯菜走了,快速釋放窗口
一種提前加載用戶需要的數據的思路,預處理 思想,緩存常用
更多Python知識,請關註:Python自學網!!
如何優雅的編寫Python並發程序
在Python中,由於歷史原因(GIL),使得Python中多線程的效果非常不理想.GIL使得任何時刻Python只能利用一個CPU核,並
且它的調度算法簡單粗暴:多線程中,讓每個線程運行一段時間t,然後強行掛起該線程,繼而去運行其他線程,如此周而復始,直到所有線程結束.
這使得無法有效利用計算機系統中的”局部性”,頻繁的線程切換也對緩存不是很友好,造成資源的浪費.
據說Python官方曾經實現了一個去除GIL的Python解釋器,但是其效果還不如有GIL的解釋器,遂放棄.後來Python官方推出了”利
用多進程替代多線程”的方案,在Python3中也有concurrent.futures這樣的包,讓我們的程序編寫可以做到”簡單和性能兼得”.
多進程/多線程+Queue
一般來說,在Python中編寫並發程序的經驗是:計算密集型任務使用多進程,IO密集型任務使用多進程或者多線程.另外,因為涉及到資源共享,所
以需要同步鎖等一系列麻煩的步驟,代碼編寫不直觀.另外一種好的思路是利用多進程/多線程+Queue的方法,可以避免加鎖這樣麻煩低效的方式.
現在在Python2中利用Queue+多進程的方法來處理一個IO密集型任務.
假設現在需要下載多個網頁內容並進行解析,單進程的方式效率很低,所以使用多進程/多線程勢在必行.
Python進程之並行與並發的區別
並行 :
當系統有一個以上CPU時,則進程的操作有可能非並發。當一個CPU執行一個進程時,另一個CPU可以執行另一個進程,兩個進程互不搶佔CPU資源,可以同時進行,這種方式我們稱之為並行。
並發 :
當有多個進程在操作時,如果系統只有一個CPU,則它根本不可能真正同時執行一個以上的進程,它只能把CPU運行時間劃分成若干個時間段,再將時間 段分配給各個進程執行,在一個時間段的進程代碼運行時,其它進程處於掛起狀,這種方式我們稱之為並發。
區別:
並發和並行是即相似又有區別的兩個概念,並行是指兩個或者多個事件在同一時刻同時執行,而並發是指兩個或多個事件通過時間片輪流被執行。在多道程序環境下,並發性是指在一段時間內宏觀上有多個程序在同時運行,但在單核CPU中,同一時刻僅能有一道程序執行,故微觀上這些程序只能是分時地交替執行。倘若在計算機中有多個CPU,則這些可以並發執行的程序便可被分配到多個處理機上,實現並行執行,即利用每個處理機來處理一個可並發執行的程序,這樣,多個程序便可以同時執行。
相關推薦:《Python視頻教程》
進程的狀態如下圖所示
在了解其他概念之前,我們首先要了解進程的幾個狀態。在程序運行的過程中,由於被操作系統的調度算法控制,程序會進入幾個狀態:就緒,運行和阻塞。
(1)就緒(Ready)狀態
當進程已分配到除CPU以外的所有必要的資源,只要獲得處理機便可立即執行,這時的進程狀態稱為就緒狀態。
(2)執行/運行(Running)狀態當進程已獲得處理機,其程序正在處理機上執行,此時的進程狀態稱為執行狀態。
(3)阻塞(Blocked)狀態正在執行的進程,由於等待某個事件發生而無法執行時,便放棄處理機而處於阻塞狀態。引起進程阻塞的事件可有多種,例如,等待I/O完成、申請緩衝區不能滿足、等待信件(信號)等。
相關推薦:
一文帶你讀懂Python中的進程
原創文章,作者:ZWEL,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/139488.html