本文目錄一覽:
- 1、Python Flask項目在Gitlab CI中自動打包Docker鏡像
- 2、怎樣在Python中操作Docker容器
- 3、如何用python監控docker
- 4、如何開發一個基於 Docker 的 Python 應用
- 5、超值一篇分享,Docker:從入門到實戰過程全記錄
Python Flask項目在Gitlab CI中自動打包Docker鏡像
第一步,在Gitlab中新建一個項目
第二步,克隆支本地
第三步,本地調通Python Flask項目
用VSCode打開該項目,先用flask在app.py下寫了一個hello world:
然後在index.html中寫下hello world,放在templates目錄下:
安裝flask依賴
用以下命令進行本地運行
打開瀏覽器進入localhost:5000即可看到Hello World
本地調試成功
第四步,本地調通Docker打包與容器運行
於是嘗試利用docker打包成鏡像,由於該項目依賴flask庫,所以在根目錄添加了requirements.txt文件,裡面標明了依賴庫以及相應的版本
然後編寫好了Dockerfile
運行命令開始打包:
打包成功,運行容器:
在瀏覽器瀏覽localhost沒有響應
查看日誌發現沒有報錯
再嘗試用瀏覽器打開127.0.0.1,也不行
網上搜索發現python flask在服務器不能直接運行,需要藉助gunicorn
於是編寫了配置文件gunicorn.conf.py:
同時修改了Dockerfile:
以及修改了依賴包requirements.txt:
再打包鏡像、運行容器,發現可以正常運作了:
第五步,Gitlab CI設置腳本自動打包Docker鏡像
由於自建Docker鏡像倉庫和賬號是隱私信息,因此使用Gitlab CI變量代替,再在項目CI/CD設置內賦值
怎樣在Python中操作Docker容器
Docker容器運行後,如何進入容器進行操作呢看起初我是用SSH。如果只啟動一個容器,用SSH還能應付,只需要將容器的22端口映射到本機的一個端口即可。當我啟動了五個容器後,每個容器默認是沒有配置SSH Server的,安裝配置SSHD,映射容器SSH端口,實在是麻煩。 我發現很多Docker鏡像都是沒有安裝SSHD服務的,難道有其他方法進入Docker容器看 有很多種方法,包括使用 docker attach 命令或 nsenter 工具等。 使用 attach 命令有時候並不方便。當多個窗口同時 attach 到同一個容器的時候,所有窗口都會同步顯示。 nsenter 可以訪問另一個進程的名字空間。 為了連接到容器,你還需要找到容器的第一個進程的 PID,可以通過下面的命令獲取。 PID=$(docker inspect –format 逗{{ .State.Pid }}地 container) //將container換成你的容器id 通過這個 PID,就可以連接到這個容器: $ nsenter –target $PID –mount –uts –ipc –net –pid 更簡單的,建議大家下載 .bashrc_docker,並將內容放到 .bashrc 中。
如何用python監控docker
platform模塊在標準庫中,它有很多運行我們獲得眾多系統信息的函數。讓我們運行Python解釋器來探索它們中的一些函數,那就從platform.uname()函數開始吧!
如何開發一個基於 Docker 的 Python 應用
python是一款應用非常廣泛的腳本程序語言,谷歌公司的網頁就是用python編寫。python在生物信息、統計、網頁製作、計算等多個領域都體現出了強大的功能。python和其他腳本語言如java、R、Perl 一樣,都可以直接在命令行里運行腳本程序。工具/原料
python;CMD命令行;windows操作系統
方法/步驟
1、首先下載安裝python,建議安裝2.7版本以上,3.0版本以下,由於3.0版本以上不向下兼容,體驗較差。
2、打開文本編輯器,推薦editplus,notepad等,將文件保存成 .py格式,editplus和notepad支持識別python語法。
腳本第一行一定要寫上 #!usr/bin/python
表示該腳本文件是可執行python腳本
如果python目錄不在usr/bin目錄下,則替換成當前python執行程序的目錄。
3、編寫完腳本之後注意調試、可以直接用editplus調試。調試方法可自行百度。腳本寫完之後,打開CMD命令行,前提是python 已經被加入到環境變量中,如果沒有加入到環境變量,請百度
4、在CMD命令行中,輸入 “python” + “空格”,即 ”python “;將已經寫好的腳本文件拖拽到當前光標位置,然後敲回車運行即可。
超值一篇分享,Docker:從入門到實戰過程全記錄
作者 | 天元浪子
來源 | CSDN博客
想要真正理解Docker,就不得不從虛擬化技術的發展歷程說起。普遍認為虛擬化技術經歷了物理機時代、虛擬機時代,目前已經進入到了容器化時代。可以說,Docker是虛擬化技術不斷發展的必然結果。
那麼,什麼是容器呢?容器和虛擬機有什麼不同?Docker和容器又是什麼關係呢?搞明白這幾個問題,Docker的概念就清晰了。
1.1 虛擬機和容器
藉助於VMWare等軟件,可以在一台計算機上創建多個虛擬機,每個虛擬機都擁有獨立的操作系統,可以各自獨立的運行程序。這種分身術雖然隔離度高(操作系統級),使用方便(類似物理機),但佔用存儲資源多(GB級)、啟動速度慢(分鐘級)的缺點也是顯而易見的。
相較於虛擬機,容器(Container)是一種輕量型的虛擬化技術,它虛擬的是最簡運行環境(類似於沙盒)而非操作系統,啟動速度快(秒級)、佔用存儲資源少(KB級或MB級),容器間隔離度為進程級。在一台計算機上可以運行上千個容器,這是容器技術對虛擬機的碾壓式優勢。
1.2 容器、鏡像和Docker
Docker是一個開源的應用容器引擎,可以創建容器以及基於容器運行的程序。Docker可以讓開發者打包他們的應用和依賴包到一個輕量級、可移植的容器中,然後發布到任何流行的Linux機器上,也可以實現虛擬化。
聽起來很簡單,但是在Docker和容器之間,還隱藏着一個鏡像的概念,令初學者頗感困惑。本質上,Docker鏡像是一個特殊的文件系統,它提供容器運行時所需的程序、庫、資源、配置等文件。Docker鏡像類似於一個py文件,它需要Docker的運行時(類似於Python解釋器)運行。鏡像被運行時,即創建了一個鏡像的實例,一個實例就是一個容器。
1.3 Docker 和 k8s
作為容器引擎,Docker為容器化的應用程序提供了開放的標準,使得開發者可以用管理應用程序的方式來管理基礎架構,實現快速交付、測試和部署代碼。隨着容器的大量使用,又產生了如何協調、調度和管理容器的問題,Docker的容器編排應運而生。
k8s是Google開源的一個容器編排引擎,它支持自動化部署、大規模可伸縮、應用容器化管理,是一個開源的,用於管理雲平台中多個主機上的容器化的應用,k8s的目標是讓部署容器化的應用簡單並且高效,k8s提供了應用部署、規劃、更新、維護的一種機制。
Docker和k8sr都是以containerd(容器化標準)作為運行時,因此使用Docker創建的鏡像完全可以在k8s中無障礙的使用。
2.1 在ubuntu中安裝
在linux系統中安裝Docker非常簡單,官方為我們提供了一鍵安裝腳本。這個方法也適用於Debian或CentOS等發行版。
安裝過程如果出現超時,不要灰心,多試幾次,總會成功的。安裝完成後,Docker只能被root用戶使用,可以使用下面的命令取消權限限制:
然後,重啟docker服務:
最後,關閉當前的命令行,重新打開新的命令行就可以了。
順便提一下,如果在CentOS下安裝,可能會出現一堆類似於下面的錯誤:
這是由於docker和Podman衝突造成的,需要先卸載Podman:
2.2 在Win10中安裝
Docker的運行,依賴linux的環境,官方提供了Docker Desktop for Windows,但是它需要安裝Hyper-V,Hyper-V是微軟開發的虛擬機,類似於 VMWare 或 VirtualBox,僅適用於 Windows 10。這個虛擬機一旦啟用,QEMU、VirtualBox 或 VMWare Workstation 15 及以下版本將無法使用!如果你必須在電腦上使用其他虛擬機(例如開發 Android 應用必須使用的模擬器),請不要使用 Hyper-V!
我的電腦是win10家庭版,不能直接安裝hyper-v,需要將下面的命令保存到cmd文件中:
然後在cmd文件上點擊右鍵,選擇使用管理員運行。執行完畢後會重啟,在重啟的過程中進行安裝。
2.3 Hello world
docker服務啟動的情況下,運行下面的命令:
此命令的含義是:
第一次運行時,因為本地沒有ubuntu:20.04鏡像,docker會自動從鏡像服務器下載。下載過程可能需要多試幾次,只要成功一次,以後執行就不再需要下載了。
docker官方還提供了一個hello-world鏡像,可以直接運行:
此命令省略了鏡像版本和運行參數,docker使用latest作為版本,即最新版本。
從hello world的例子中,也可以體驗到,docker實例的運行是非常快的。
docker官方的鏡像庫比較慢,在進行鏡像操作之前,需要將鏡像源設置為國內的站點。
新建文件/etc/docker/daemon.json,輸入如下內容:
然後重啟docker的服務:
3.1 列出本地所有鏡像
執行命令 docker images 可以查看
當前我本地只有剛才安裝的兩個鏡像。
3.2 從鏡像庫中查找鏡像
執行命令 docker search 鏡像名稱可以從docker鏡像庫中查找鏡像。
最好選擇官方(OFFICIAL)的鏡像,這樣的鏡像最穩定一些。
3.3 下載新的鏡像
執行命令docker pull 鏡像名稱:版本號即可下載新的鏡像。
鏡像下載後,就可以使用鏡像來創建容器了。
4.1 啟動容器
執行命令docker run即可啟動容器,也就是創建某個鏡像的實例。docker run命令非常複雜,可以先執行一個docker run –help來查看幫助:
比如我們要執行python的shell,需要添加-it參數,即:docker run -it python:3.8
4.2 將宿主機的文件掛載到容器
docker容器與宿主機是隔離的,要想讓容器內的程序能訪問宿主機上的文件,需要通過-v參數將宿主機的文件掛載到容器中。
比如我們在宿主機上有一個hello.py,可以打印hello,想要在python容器中執行,就需要進行掛載。-v後還需要接兩個參數,分別是宿主機的目錄和容器內的目錄,兩者使用:分隔,路徑必須都是絕對路徑。
我的hello.py保存在主目錄的/docker_test目錄中,將這個目錄掛載到容器的/docker_test目錄,然後在容器內執行python /docker_test/hello.py:
4.3 容器的端口映射
我們修改一下hello.py,創建一個socket服務端,並監聽5000端口,當有客戶端連接時,打印客戶端的地址,先客戶端發送hello,然後關閉連接:
在容器內執行:
接下來,嘗試用telnet命令連接,結果卻是失敗的。原因是,127.0.0.1是宿主機的ip地址,5000是容器的端口,這與我們的習慣稍微有些不同。事實上,docker的容器是非常輕量的,它並沒有自己的網絡,要想訪問容器的端口,需要進行端口映射,將容器的某端口映射到宿主機的端口,客戶端連接時,只要與宿主機的端口進行連接就可以了。
需要注意的是,上面的代碼創建的服務器,無論如何也不可能被客戶端連接,因為代碼中綁定了127.0.0.1的ip,在容器中運行時,需要綁定所有ip,即0.0.0.0。
然後,再使用-p參數,-p還需要三個參數,即宿主機的ip地址、宿主機的端口、容器的端口,三者之間使用:分隔。一般的,可以將宿主機的ip地址省略,只寫宿主機的端口:容器的端口即可。
這樣,就將容器的5000端口映射到了宿主機的5001端口,使用:
即可與容器中的服務器進行連接。
4.4 容器管理
上面的服務運行之後,可以使用docker ps命令,查看運行中的容器:
顯示的內容有下面幾列:
要想結束容器,可以使用docker kill 容器ID命令。
一般而言,當我們的程序開發完成後,會連同程序文件與運行環境一起製作成一個新的鏡像。
要製作鏡像,需要編寫Dockerfile。DockeFile由多個命令組成,常用的命令有:
注意,Docker鏡像中有一個層的概念,每執行一個RUN命令,就會創建一個層,層過多會導致鏡像文件體積增大。盡量在RUN命令中使用連接多條shell命令,減少RUN命令的個數,可以有效減小鏡像文件的體積。
5.1 自製顯示文本文件內容鏡像
編寫cat.py,接收一個文件名,由python讀取文件並顯示文件的內容:
這個例子比較簡單,縮寫Dockerfile如下:
這個Dockerfile的含義是:
需要說明的是,ENTRYPOINT有兩種寫法:
這裡採用第二種寫法,是因為我們要在外部給容器傳遞參數。執行命令編譯Docker鏡像:
這個命令中,-t的含義是目標,即生成的鏡像名為hello,版本號為1.0,別忘了最後那個.,這叫到上下文路徑,是指 docker 在構建鏡像,有時候想要使用到本機的文件(比如複製),docker build 命令得知這個路徑後,會將路徑下的所有內容打包。
這樣,我們的第一個鏡像就製作完成了,使用下面的命令執行它:
即可看到~/docker_test/cat/files/test.txt的內容。
5.2 自製web服務器鏡像
我們使用tornado開發一個網站,而python的官方鏡像是沒有tornado庫的,這就需要在製作鏡像時進行安裝。
測試的ws.py如下:
編寫Dockerfile文件如下:
在此我們驗證一下CMD與ENTRYPOINT的區別。在Dockerfile所在有目錄下執行如下命令:
執行完成後,再使用docker images使用就可以看到生成的鏡像了,然後使用下面的命令運行:
在瀏覽器中輸入宿主機的ip和8000端口,就可以看到頁面了。
在這個例子中,我使用的運行命令是CMD,如果在docker run中指定的其他的命令,此命令就不會被執行,如:
此時,容器中被執行的是python命令,而不是我們的服務。在更多情況下,我們希望在docker run命令中為我們的服務傳參,而不是覆蓋執行命令,那麼,我們應該使用ENTRYPOINT而不是CMD:
上面這種寫法,是不支持傳遞參數的,ENTRYPOINT和CMD還支持另一種寫法:
使用這種寫法,docker run命令中的參數才可以傳遞給hello.py:
這個命令中,–port=9000被作為參數傳遞到hello.py中,因此容器內的端口就成了9000。
在生產環境中運行時,不會使用-it選項,而是使用-d選項,讓容器在後台運行:
這種方式下,即使當前的控制台被關閉,該容器也不會停止。
5.3 自製apscheduler服務鏡像
接下來,製作一個使用apscheduler編寫的服務鏡像,代碼如下:
Dockerfile也是信手拈來:
生成鏡像:
應該可以運行了,文件複製需要兩個目錄,在運行時,可以使用兩次-v來掛載不同的目錄:
前面用到的官方python鏡像大小足足882MB,在這個基礎上,再安裝用到的第三方庫,添加項目需要的圖片等資源,大小很容易就超過1個G,這麼大的鏡像,網絡傳給客戶非常的不方便,因此,減小鏡像的體積是非常必要的工作。
docker hub上有個一python:3.8-alpine鏡像,大小只有44.5MB。之所以小,是因為alpine是一個採用了busybox架構的操作系統,一般用於嵌入式應用。我嘗試使用這個鏡像,發現安裝一般的庫還好,但如果想安裝numpy等就會困難重重,甚至網上都找不到解決方案。
還是很回到基本的路線上來,主流的操作系統鏡像,ubuntu的大小為72.9MB,centos的大小為209MB——這也算是我更喜歡使用ubuntu的一個重要原因吧!使用ubuntu作為基礎鏡像,安裝python後的大小為139MB,再安裝pip後的大小一下子上升到了407MB,要是再安裝點其他東西,很容易就趕上或超過python官方鏡像的大小了。
看來,尋常路線是很難壓縮鏡像文件體積了。幸好,還有一條曲線救國的路可走,這就是多階段構建法。
多階段構建的思想其實很簡單,先構建一個大而全的鏡像,然後只把鏡像中有用的部分拿出來,放在一個新的鏡像里。在我們的場景下,pip只在構建鏡像的過程中需要,而對運行我們的程序卻一點用處也沒有。我們只需要安裝pip,再用pip安裝第三方庫,然後將第三方庫從這個鏡像中複製到一個只有python,沒有pip的鏡像中,這樣,pip佔用的268MB空間就可以被節省出來了。
1、在ubuntu鏡像的基礎上安裝python:
然後運行:
這樣,就生成了python:3.8-ubuntu鏡像。
2、在python:3.8-ubuntu的基礎上安裝pip:
然後運行:
這樣,就生成了python:3.8-ubuntu-pip鏡像。
3、多階段構建目標鏡像:
這個dockerfile需要解釋一下了,因為它有兩個FROM命令。
第一個是以python:3.8-ubuntu-pip鏡像為基礎,安裝numpy,當然,在實際應用中,把所有用到的第三方庫出寫在這裡。
第二個FROM是以FROM python:3.8-ubuntu鏡像為基礎,將第三方庫統統複製過來,COPY命令後的–from=0的意思是從第0階段進行複製。實際應用中再從上下文中複製程序代碼,添加需要的ENTRYPOINT等。
最後,再運行:
這然,用於我們項目的鏡像就做好了。比使用官方python鏡像構建的版本,小了大約750MB。
到此,我們的鏡像已經製作好了,可是,鏡像文件在哪,如何在生產環境下運行呢?
剛才使用docker images命令時,已經看到了生成的鏡像:
我們可以使用docker save命令將鏡像保存到指定的文件中,保存的文件是一個.tar格式的壓縮文件:
將hello.tar複製到生產環境的機器上,然後執行導入命令:
就可以使用了。
原創文章,作者:A5M3Y,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/129585.html