本文目錄一覽:
- 1、python中如何將表中的數據做成一張表,然後再從中取出數據?
- 2、在python中self.info()。是什麼意思,怎麼用的
- 3、python數據分析幹什麼
- 4、怎樣用 Python 進行數據分析?
python中如何將表中的數據做成一張表,然後再從中取出數據?
第一部分是生成數據表,常見的生成方法有兩種,第一種是導入外部數據,第二種是直接寫入數據。 Excel 中的文件菜單中提供了獲取外部數據的功能,支持數據庫和文本文件和頁面的多種數據源導入。
獲取外部數據
python 支持從多種類型的數據導入。在開始使用 python 進行數據導入前需要先導入 pandas 庫,為了方便起見,我們也同時導入 numpy 庫。
1 import numpy as np
2 import pandas as pd
導入數據表
下面分別是從 excel 和 csv 格式文件導入數據並創建數據表的方法。代碼是最簡模式,裡面有很多可選參數設置,例如列名稱,索引列,數據格式等等。感興趣的朋友可以參考 pandas 的
官方文檔。
1 df=pd.DataFrame(pd.read_csv(‘name.csv’,header=1))
2 df=pd.DataFrame(pd.read_excel(‘name.xlsx’))
創建數據表
另一種方法是通過直接寫入數據來生成數據表,excel 中直接在單元格中輸入數據就可以,python 中通過下面的代碼來實現。生成數據表的函數是 pandas 庫中的 DateFrame 函數,數據表一共有 6 行數據,每行有 6 個字段。在數據中我們特意設置了一些 NA 值和有問題的字段,例如包含空格等。後面將在數據清洗步驟進行處理。後面我們將統一以 DataFrame 的簡稱 df 來命名數據表。
1 df = pd.DataFrame({‘id’:[1001,1002,1003,1004,1005,1006],
2 ‘date’:pd.date_range(‘20130102’, periods=6),
3 ‘city’:[‘Beijing ‘, ‘SH’, ’ guangzhou ‘, ‘Shenzhen’, ‘shanghai’, ‘BEIJING ‘],
4 ‘age’:[23,44,54,32,34,32],
5 ‘category’:[‘100-A’,‘100-B’,‘110-A’,‘110-C’,‘210-A’,‘130-F’],
6 ‘price’:[1200,np.nan,2133,5433,np.nan,4432]},
7 columns =[‘id’,‘date’,‘city’,‘category’,‘age’,‘price’])
這是剛剛創建的數據表,我們沒有設置索引列,price 字段中包含有 NA 值,city 字段中還包含了一些臟數據。
數據表檢查
python 中處理的數據量通常會比較大,所以就需要我們對數據表進行檢查。比如我們之前的文章中介紹的紐約出租車數據和 Citibike 的騎行數據,數據量都在千萬級,我們無法一目了然的了解數據表的整體情況,必須要通過一些方法來獲得數據表的關鍵信息。數據表檢查的另一個目的是了解數據的概況,例如整個數據表的大小,所佔空間,數據格式,是否有空值和重複項和具體的數據內容。為後面的清洗和預處理做好準備。
數據維度(行列)
Excel 中可以通過 CTRL 向下的光標鍵,和 CTRL 向右的光標鍵來查看行號和列號。Python 中使用 shape 函數來查看數據表的維度,也就是行數和列數,函數返回的結果(6,6)表示數據表有 6 行,6 列。下面是具體的代碼。
1 #查看數據表的維度
2 df.shape
3 (6, 6)
數據表信息
使用 info 函數查看數據表的整體信息,這裡返回的信息比較多,包括數據維度,列名稱,數據格式和所佔空間等信息。
1 #數據表信息
2 df.info()
4 class ‘pandas.core.frame.DataFrame’
5 RangeIndex: 6 entries, 0 to 5
6 Data columns (total 6 columns):
7 id 6 non-null int64
8 date 6 non-null datetime64[ns]
9 city 6 non-null object
10 category 6 non-null object
11 age 6 non-null int64
12 price 4 non-null float64
13 dtypes: datetime64ns, float64(1), int64(2), object(2)
14 memory usage: 368.0 bytes
查看數據格式
Excel 中通過選中單元格並查看開始菜單中的數值類型來判斷數據的格式。Python 中使用 dtypes 函數來返回數據格式。
Dtypes 是一個查看數據格式的函數,可以一次性查看數據表中所有數據的格式,也可以指定一列來單獨查看。
1#查看數據表各列格式
2df.dtypes
3
4id int64
5date datetime64[ns]
6city object
7category object
8age int64
9price float64
10dtype: object
11
12#查看單列格式
13df[‘B’].dtype
14
15dtype(‘int64’)
查看空值
Excel 中查看空值的方法是使用“定位條件”功能對數據表中的空值進行定位。“定位條件”在“開始”目錄下的“查找和選擇”目錄中。
Isnull 是 Python 中檢驗空值的函數,返回的結果是邏輯值,包含空值返回 True,不包含則返回 False。可以對整個數據表進行檢查,也可以單獨對某一列進行空值檢查。
df_isnull
1#檢查特定列空值
2df[‘price’].isnull()
3
40 False
51 True
62 False
73 False
84 True
95 False
10Name: price, dtype: bool
查看唯一值
Excel 中查看唯一值的方法是使用“條件格式”對唯一值進行顏色標記。Python 中使用 unique 函數查看唯一值。
Unique 是查看唯一值的函數,只能對數據表中的特定列進行檢查。下面是代碼,返回的結果是該列中的唯一值。類似與 Excel 中刪除重複項後的結果。
1 #查看 city 列中的唯一值
2 df[‘city’].unique()34array([‘Beijing ‘, ‘SH’, ’ guangzhou ‘, ‘Shenzhen’, ‘shanghai’, ‘BEIJING ‘], dtype=object)
查看數據表數值
Python 中的 Values 函數用來查看數據表中的數值。以數組的形式返回,不包含表頭信息。
1#查看數據表的值
2df.values
3
4array([[1001, Timestamp(‘2013-01-02 00:00:00’), ‘Beijing ‘, ‘100-A’, 23,
5 1200.0],
6 [1002, Timestamp(‘2013-01-03 00:00:00’), ‘SH’, ‘100-B’, 44, nan],
7 [1003, Timestamp(‘2013-01-04 00:00:00’), ’ guangzhou ‘, ‘110-A’, 54,
8 2133.0],
9 [1004, Timestamp(‘2013-01-05 00:00:00’), ‘Shenzhen’, ‘110-C’, 32,
10 5433.0],
11 [1005, Timestamp(‘2013-01-06 00:00:00’), ‘shanghai’, ‘210-A’, 34,
12 nan],
13 [1006, Timestamp(‘2013-01-07 00:00:00’), ‘BEIJING ‘, ‘130-F’, 32,
14 4432.0]], dtype=object)
查看列名稱
Colums 函數用來單獨查看數據表中的列名稱。
1 #查看列名稱
2 df.columns
3
4 Index([‘id’, ‘date’, ‘city’, ‘category’, ‘age’, ‘price’], dtype=‘object’)
查看前 10 行數據
Head 函數用來查看數據表中的前 N 行數據,默認 head()顯示前 10 行數據,可以自己設置參數值來確定查看的行數。下面的代碼中設置查看前 3 行的數據。
1#查看前 3 行數據“df.head(“3“)
Tail 行數與 head 函數相反,用來查看數據表中後 N 行的數據,默認 tail()顯示後 10 行數據,可以自己設置參數值來確定查看的行數。下面的代碼中設置查看後 3 行的數據。
1#查看最後 3 行df.tail(3)
在python中self.info()。是什麼意思,怎麼用的
info是類中自定義的一個方法,self.info()表示在類的其他實例方法中調用這個方法。
python數據分析幹什麼
第一、檢查數據表
Python中使用shape函數來查看數據表的維度,也就是行數以及列數。你可以使用info函數來查看數據表的整體信息,使用dtype函數來返回數據格式;lsnull是Python中檢驗空值的函數,可以對整個數據表進行檢查,也可以單獨對某一行進行空值檢查,返回的結構是邏輯值,包含空值返回true,不包含則返回false。
第二、數據清洗
Python可以進行數據清洗,Python中處理空值的方法比較靈活,可以使用Dropna函數用來刪除數據表中包含空值的數據,也可以使用fillna函數對空值進行填充;Python中dtype是查看數據格式的函數,與之對應的是astype函數,用來更改數據格式,Rename是更改列名稱的函數,drop_duplicates函數刪除重複值,replace函數實現數據替換。
第三、數據提取
進行數據提取時,主要使用三個函數:loc、iloc以及ix。Loc函數按標籤進行提取,iloc按位置進行提取,ix可以同時按照標籤和位置進行提取。除了按標籤和位置提取數據之外,還可以按照具體的條件進行提取,比如使用loc和isin兩個函數配合使用。
第四、數據篩選
Python數據分析還可以進行數據篩選,Python中使用loc函數配合篩選條件來完成篩選功能,配合sum和count函數還能實現Excel中sumif和countif函數的功能。使用的主要函數是groupby和pivot_table;groupby是進行分類匯總的函數,使用方法比較簡單,groupby按列名稱出現的順序進行分組。
怎樣用 Python 進行數據分析?
做數據分析,首先你要知道有哪些數據分析的方法,然後才是用Python去調用這些方法
那Python有哪些庫類是能做數據分析的,很多,pandas,sklearn等等
所以你首先要裝一個anaconda套件,它包含了幾乎所有的Python數據分析工具,
之後再學怎麼分析。
原創文章,作者:XIZKJ,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/128101.html