本文目錄一覽:
- 1、OpenCV Python 系列教程4 – OpenCV 圖像處理(上)
- 2、OpenCV-Python教程:57.圖像修復
- 3、圖像處理和數據增強
- 4、python進行圖像處理,剛開始就出現如下錯誤,請問應該怎麼解決
OpenCV Python 系列教程4 – OpenCV 圖像處理(上)
學習目標:
OpenCV 中有 150 多種色彩空間轉化的方法,這裡只討論兩種:
HSV的色相範圍為[0,179],飽和度範圍為[0,255],值範圍為[0,255]。不同的軟件使用不同的規模。如果要比較 OpenCV 值和它們,你需要標準化這些範圍。
HSV 和 HLV 解釋
運行結果:該段程序的作用是檢測藍色目標,同理可以檢測其他顏色的目標
結果中存在一定的噪音,之後的章節將會去掉它
這是物體跟蹤中最簡單的方法。一旦你學會了等高線的函數,你可以做很多事情,比如找到這個物體的質心,用它來跟蹤這個物體,僅僅通過在相機前移動你的手來畫圖表,還有很多其他有趣的事情。
菜鳥教程 在線 HSV- BGR 轉換
比如要找出綠色的 HSV 值,可以使用上面的程序,得到的值取一個上下界。如上面的取下界 [H-10, 100, 100],上界 [H+10, 255, 255]
或者使用其他工具如 GIMP
學習目標:
對圖像進行閾值處理,算是一種最簡單的圖像分割方法,基於圖像與背景之間的灰度差異,此項分割是基於像素級的分割
threshold(src, thresh, maxval, type[, dst]) – retval, dst
計算圖像小區域的閾值。所以我們對同一幅圖像的不同區域得到不同的閾值,這給我們在不同光照下的圖像提供了更好的結果。
三個特殊的輸入參數和一個輸出參數
adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst]) – dst
opencv-threshold-python
OpenCV 圖片集
本節原文
學習目標:
OpenCV 提供兩種變換函數: cv2.warpAffine 和 cv2.warpPerspective
cv2.resize() 完成縮放
文檔說明
運行結果
說明 : cv2.INTER_LINEAR 方法比 cv2.INTER_CUBIC 還慢,好像與官方文檔說的不一致? 有待驗證。
速度比較: INTER_CUBIC INTER_NEAREST INTER_LINEAR INTER_AREA INTER_LANCZOS4
改變圖像的位置,創建一個 np.float32 類型的變換矩陣,
warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) – dst
運行結果:
旋轉角度( )是通過一個變換矩陣變換的:
OpenCV 提供的是可調旋轉中心的縮放旋轉,這樣你可以在任何你喜歡的位置旋轉。修正後的變換矩陣為
這裡
OpenCV 提供了 cv2.getRotationMatrix2D 控制
cv2.getRotationMatrix2D(center, angle, scale) → retval
運行結果
cv2.getAffineTransform(src, dst) → retval
函數關係:
\begin{bmatrix} x’_i \ y’_i \end{bmatrix}\begin{bmatrix} x’_i \ y’_i \end{bmatrix} =
其中
運行結果:圖上的點便於觀察,兩圖中的紅點是相互對應的
透視變換需要一個 3×3 變換矩陣。轉換之後直線仍然保持筆直,要找到這個變換矩陣,需要輸入圖像上的 4 個點和輸出圖像上的對應點。在這 4 個點中,有 3 個不應該共線。通過 cv2.getPerspectiveTransform 計算得到變換矩陣,得到的矩陣 cv2.warpPerspective 變換得到最終結果。
本節原文
平滑處理(smoothing)也稱模糊處理(bluring),是一種簡單且使用頻率很高的圖像處理方法。平滑處理的用途:常見是用來 減少圖像上的噪點或失真 。在涉及到降低圖像分辨率時,平滑處理是很好用的方法。
圖像濾波:盡量保留圖像細節特徵的條件下對目標圖像的噪聲進行抑制,其處理效果的好壞將直接影響到後續圖像處理和分析的有效性和可靠性。
消除圖像中的噪聲成分叫做圖像的平滑化或濾波操作。信號或圖像的能量大部分集中在幅度譜的低頻和中頻段,在高頻段,有用的信息會被噪聲淹沒。因此一個能降低高頻成分幅度的濾波器就能夠減弱噪聲的影響。
濾波的目的:抽出對象的特徵作為圖像識別的特徵模式;為適應圖像處理的要求,消除圖像數字化時混入的噪聲。
濾波處理的要求:不能損壞圖像的輪廓及邊緣等重要信息;圖像清晰視覺效果好。
平滑濾波是低頻增強的空間濾波技術,目的:模糊和消除噪音。
空間域的平滑濾波一般採用簡單平均法,即求鄰近像元點的平均亮度值。鄰域的大小與平滑的效果直接相關,鄰域越大平滑效果越好,但是鄰域過大,平滑也會使邊緣信息的損失的越大,從而使輸出圖像變得模糊。因此需要選擇合適的鄰域。
濾波器:一個包含加權係數的窗口,利用濾波器平滑處理圖像時,把這個窗口放在圖像上,透過這個窗口來看我們得到的圖像。
線性濾波器:用於剔除輸入信號中不想要的頻率或者從許多頻率中選擇一個想要的頻率。
低通濾波器、高通濾波器、帶通濾波器、帶阻濾波器、全通濾波器、陷波濾波器
boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]]) – dst
均值濾波是方框濾波歸一化後的特殊情況。歸一化就是要把處理的量縮放到一個範圍內如 (0,1),以便統一處理和直觀量化。非歸一化的方框濾波用於計算每個像素鄰近內的積分特性,比如密集光流算法中用到的圖像倒數的協方差矩陣。
運行結果:
均值濾波是典型的線性濾波算法,主要方法為鄰域平均法,即用一片圖像區域的各個像素的均值來代替原圖像中的各個像素值。一般需要在圖像上對目標像素給出一個模板(內核),該模板包括了其周圍的臨近像素(比如以目標像素為中心的周圍8(3×3-1)個像素,構成一個濾波模板,即 去掉目標像素本身 )。再用模板中的全體像素的平均值來代替原來像素值。即對待處理的當前像素點(x,y),選擇一個模板,該模板由其近鄰的若干像素組成,求模板中所有像素的均值,再把該均值賦予當前像素點(x,y),作為處理後圖像在該點上的灰度個g(x,y),即個g(x,y)=1/m ∑f(x,y) ,其中m為該模板中包含當前像素在內的像素總個數。
均值濾波本身存在着固有的缺陷,即它不能很好地保護圖像細節,在圖像去噪的同時也破壞了圖像的細節部分,從而使圖像變得模糊,不能很好地去除噪聲點。
cv2.blur(src, ksize[, dst[, anchor[, borderType]]]) → dst
結果:
高斯濾波:線性濾波,可以消除高斯噪聲,廣泛應用於圖像處理的減噪過程。高斯濾波就是對整幅圖像進行加權平均的過程,每一個像素點的值,都由其本身和鄰域內的其他像素值經過 加權平均 後得到。高斯濾波的具體操作是:用一個模板(或稱卷積、掩模)掃描圖像中的每一個像素,用模板確定的鄰域內像素的加權平均灰度值去替代模板中心像素點的值。
高斯濾波有用但是效率不高。
高斯模糊技術生成的圖像,其視覺效果就像是經過一個半透明屏幕在觀察圖像,這與鏡頭焦外成像效果散景以及普通照明陰影中的效果都明顯不同。高斯平滑也用於計算機視覺算法中的預先處理階段,以增強圖像在不同比例大小下的圖像效果(參見尺度空間表示以及尺度空間實現)。從數學的角度來看,圖像的高斯模糊過程就是圖像與正態分布做卷積。由於正態分布又叫作高斯分布,所以這項技術就叫作高斯模糊。
高斯濾波器是一類根據高斯函數的形狀來選擇權值的線性平滑濾波器。 高斯平滑濾波器對於抑制服從正態分布的噪聲非常有效。
一維零均值高斯函數為: 高斯分布參數 決定了高斯函數的寬度。
高斯噪聲的產生
GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]]) – dst
線性濾波容易構造,並且易於從頻率響應的角度來進行分析。
許多情況,使用近鄰像素的非線性濾波會得到更好的結果。比如在噪聲是散粒噪聲而不是高斯噪聲,即圖像偶爾會出現很大值的時候,用高斯濾波器進行圖像模糊時,噪聲像素不會被消除,而是轉化為更為柔和但仍然可見的散粒。
中值濾波(Median filter)是一種典型的非線性濾波技術,基本思想是用像素點鄰域灰度值的中值來代替該像素點的灰度值,該方法在去除脈衝噪聲、椒鹽噪聲『椒鹽噪聲又稱脈衝噪聲,它隨機改變一些像素值,是由圖像傳感器,傳輸信道,解碼處理等產生的黑白相間的亮暗點噪聲。椒鹽噪聲往往由圖像切割引起。』的同時又能保留圖像邊緣細節,
中值濾波是基於排序統計理論的一種能有效抑制噪聲的非線性信號處理技術,其基本原理是把數字圖像或數字序列中一點的值用該點的一個鄰域中各點值的中值代替,讓周圍的像素值接近的真實值,從而消除孤立的噪聲點,對於 斑點噪聲(speckle noise)和椒鹽噪聲(salt-and-pepper noise) 來說尤其有用,因為它不依賴於鄰域內那些與典型值差別很大的值。中值濾波器在處理連續圖像窗函數時與線性濾波器的工作方式類似,但濾波過程卻不再是加權運算。
中值濾波在一定的條件下可以克服常見線性濾波器如最小均方濾波、方框濾波器、均值濾波等帶來的圖像細節模糊,而且對濾除脈衝干擾及圖像掃描噪聲非常有效,也常用於保護邊緣信息, 保存邊緣的特性使它在不希望出現邊緣模糊的場合也很有用,是非常經典的平滑噪聲處理方法。
與均值濾波比較:
說明:中值濾波在一定條件下,可以克服線性濾波器(如均值濾波等)所帶來的圖像細節模糊,而且對濾除脈衝干擾即圖像掃描噪聲最為有效。在實際運算過程中並不需要圖像的統計特性,也給計算帶來不少方便。 但是對一些細節多,特別是線、尖頂等細節多的圖像不宜採用中值濾波。
雙邊濾波(Bilateral filter)是一種非線性的濾波方法,是結合 圖像的空間鄰近度和像素值相似度 的一種折衷處理,同時考慮空域信息和灰度相似性,達到保邊去噪的目的。具有簡單、非迭代、局部的特點。
雙邊濾波器的好處是可以做邊緣保存(edge preserving),一般過去用的維納濾波或者高斯濾波去降噪,都會較明顯地模糊邊緣,對於高頻細節的保護效果並不明顯。雙邊濾波器顧名思義比高斯濾波多了一個高斯方差 sigma-d ,它是基於空間分布的高斯濾波函數,所以在邊緣附近,離的較遠的像素不會太多影響到邊緣上的像素值,這樣就保證了邊緣附近像素值的保存。 但是由於保存了過多的高頻信息,對於彩色圖像里的高頻噪聲,雙邊濾波器不能夠乾淨的濾掉,只能夠對於低頻信息進行較好的濾波。
運行結果
學習目標:
形態變換是基於圖像形狀的一些簡單操作。它通常在二進制圖像上執行。
膨脹與腐蝕實現的功能
侵蝕的基本思想就像土壤侵蝕一樣,它會侵蝕前景物體的邊界(總是試圖保持前景為白色)。那它是做什麼的?內核在圖像中滑動(如在2D卷積中)。只有當內核下的所有像素都是 1 時,原始圖像中的像素( 1 或 0 )才會被視為 1 ,否則它將被侵蝕(變為零)
erode(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) – dst
與腐蝕的操作相反。如果內核下的至少一個像素為“1”,則像素元素為“1”。因此它增加了圖像中的白色區域或前景對象的大小增加。通常,在去除噪音的情況下,侵蝕之後是擴張。因為,侵蝕會消除白噪聲,但它也會縮小我們的物體。所以我們擴大它。由於噪音消失了,它們不會再回來,但我們的物體區域會增加。它也可用於連接對象的破碎部分
OpenCV-Python教程:57.圖像修復
基礎
你們可能家裡都會有一些老照片已經有黑點啊,劃痕啊等。你有想過修復它們么?我們不能簡單的在繪圖工具里把他們擦除了就完了。因為這樣只是把黑色的東西變成白色的而已,實際上沒用。在這種情況下,會用到一種技術叫圖像修復。基本的思想很簡單:用周圍的像素替換壞掉的像素,這樣看上去就和周圍一樣了。比如下面這張:
很多算法被設計來干這個,OpenCV提供了兩個,可以用同一個函數來訪問: cv2.inpaint()
第一個算法是基於論文” An Image Inpainting Technique Based on the Fast Marching Method”。 是基於快速匹配方法的。假設圖像里的一個區域要修復。算法從這個區域的邊界開始,逐漸地進入區域,把邊界內的所有東西填充上。它取要修復的部分周圍的一個像素周圍的一小片鄰居。這個像素被周圍已知的像素的標準加權和替換掉。選擇權重是很重要的。要修復的點周圍像素的權重較高。和正常邊界近的,還有在邊界輪廓上的像素的權重較高。當像素被修復以後,它會通過快速匹配方法(FMM)移動到最近的像素。FMM保證那些已知像素周圍的像素首先被修復,所以這個就像人工啟發式的操作一樣。這個算法使用標誌cv2.INPAINT_TELEA開啟。
第二個算法基於論文” Navier-Stokes, Fluid Dynamics, and Image and Video Inpainting “.這個算法基於流體動力學和偏微分方程。基本原則是啟發式。它首從已知區域先沿着邊緣到未知區域訪問(由於邊緣應該是連續的)。在匹配邊要修復區域邊界的梯度向量時持續畫等值線(把相同亮度的點用線連起來,類似於輪廓線)。這時候用到流體動力學。之後會填充顏色以減小最小方差。這個算法用標誌cv2.INPAINT_NS啟用。
編碼
我們需要創建和輸入圖像相同大小的掩圖,需要修復的區域對應的像素要非0.剩下的就簡單了。我的圖像被一些黑色劃痕給破壞了(實際上是我自己加的)。我用繪圖工具對應的標記出來。
看下面的結果。第一個圖片是輸入圖像,第二個是掩圖,第三個是用第一種算法的結果,最後一張是第二種算法的結果。
END
圖像處理和數據增強
前言:用CNN進行訓練模型的時候,通常需要對圖像進行處理,有時候也叫做數據增強,常見的圖像處理的Python庫:OpenCV、PIL、matplotlib、tensorflow等,這裡用TensorFlow介紹圖像處理的過程
進行圖像的讀取和解碼,然後調用函數進行展示
結果如下:
圖片的大小為:(512, 512, 3)
結果:
圖片的大小為:(20, 20, 3)
注意:當放大時候,幾乎圖像不失真
上述為中間位置剪切或者填充,下面介紹任意位置剪切或者填充
這樣就可以截取任意圖像裡面的內容了
下面的圖像處理歸結到數據增強裡面了
當訓練數據有限的時候,可以通過一些變換來從已有的訓 練數據集中生成一些新的數據,來擴大訓練數據。數據增強的方法有:
以水平面為對稱軸如下:
轉置,相當於矩陣的轉置,90度轉換
注意:顏色空間的轉換必須講image的值轉換為float32類型,不能使用unit8類型
圖像基本格式:
rgb(顏色)0-255,三個255為白色,轉化為float32就是把區間變為0-1
hsv(h: 圖像的色彩/色度,s:圖像的飽和度,v:圖像的亮度)
grab(灰度)
這樣的方法,可以運用到車牌設別的過程中,對車牌自動進行截取。
高斯噪聲、模糊處理
樣本不均衡即有些類別圖像特別多,有些特別少。類別不平衡數據的處理:Label shuffle
具體步驟如下圖所示:
先按最多的類別進行隨機抽取序號,組數為label的數目,然後對每個label中的樣本書取模,然後分別對應自己序號的圖像,最後得到的樣本所有類別都一樣多。
python進行圖像處理,剛開始就出現如下錯誤,請問應該怎麼解決
首先,檢查一下你是否有_imaging模塊。
在windows平台下看看有沒有_imaging.pyd文件(有些情況為_imaging.dll),我的目錄為C:\Python27\Lib\site-packages\PIL,在Unix下找個叫_imaging.so 或者_imagingmodule.so
的文件,有些Unix的平台的擴展名可能為.sl。
以下方法用於檢查目錄:
打開命令提示符輸入python -v ,再輸入import Image
另外一種方法是import sys,然後print sys.path
最後,如果到此都行,在交互模式下輸入import _imaging還提示
那你再檢查一下,安裝的PIL 是否跟你的電腦匹配,32位還是64位。重新安裝
原創文章,作者:N9TMF,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/128099.html