深入理解 cv2.moments

在图像处理领域,cv2.moments 函数是非常常见的一个函数。它用于计算二值图像的各种矩形信息,包括质心、面积、外接矩形等。本文将从多个方面深入探讨 cv2.moments 函数。

一、基本概述

cv2.moments 函数的基本语法为:

cv2.moments(img, binaryImage=False)

其中, img 表示输入的二值图像,binaryImage 表示输入的二值图像是否已经是经过二值化处理的。如果是,则传入 True,否则传入 False。

cv2.moments 函数的返回值为一个字典,包含了图像矩及其他信息。字典的键与矩的特征有关,例如中心矩、二阶矩等。

moments = cv2.moments(img, binaryImage=False)
m00 = moments['m00'] # 面积
cx = moments['m10'] / moments['m00'] # x坐标
cy = moments['m01'] / moments['m00'] # y坐标

其中, m00 表示图像的面积,cx 和 cy 分别表示图像的重心。

二、计算图像重心

重心是物体的平衡中心,也称质心。在图像处理中,求解重心是非常重要的一个问题,可以用于寻找物体的位置以及进行物体跟踪等应用。

cv2.moments 函数可以用于计算图像的重心坐标。重心坐标(cx, cy)的计算公式为:

其中, M10、M01 和 M00 分别表示一阶矩、横向二阶矩和面积。通过 cv2.moments 函数可以获取到这些值,然后进行计算即可。

下面是一个计算图像重心的示例代码:

import cv2

# 读入图像
img = cv2.imread("example.jpg")

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化处理
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

# 计算图像重心
moments = cv2.moments(thresh, True)
cx = moments['m10'] / moments['m00']
cy = moments['m01'] / moments['m00']
print("图像重心坐标: ({}, {})".format(int(cx), int(cy)))

在本示例代码中,我们先读入一张图像,然后将其转换为灰度图像,再使用 OTSU 算法进行二值化处理。最后,使用 cv2.moments 函数计算图像重心坐标,并将结果输出。

三、计算图像的轮廓和面积

在计算图像重心的过程中,我们已经使用 cv2.moments 函数计算了图像的面积。实际上,cv2.moments 函数还可以计算图像的其他特征,例如积和中心矩、轮廓等。

图像的轮廓是指由一系列连续的点组成的线段,这些线段围绕着物体的边界。cv2.moments 函数可以通过设置参数 binaryImage=True 计算图像的轮廓。

下面是一个计算图像轮廓和面积的示例代码:

import cv2

# 读入图像
img = cv2.imread("example.jpg")

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化处理
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

# 计算图像轮廓和面积
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnt = contours[0]
moments = cv2.moments(cnt, True)
area = moments['m00']
print("图像面积: ", area)

在本示例代码中,我们先读入一张图像,然后将其转换为灰度图像,再使用 OTSU 算法进行二值化处理。接着,使用 cv2.findContours 函数计算图像的轮廓,并选择轮廓序列中的第一个轮廓进行计算。最后,使用 cv2.moments 函数计算轮廓的面积,并将结果输出。

四、计算图像的边框

除了计算图像的轮廓和面积外,cv2.moments 函数还可以计算图像的边框信息,包括轮廓的外接矩形、最小矩形和最小闭合圆等。

使用 cv2.boundingRect 函数可以计算轮廓的外接矩形,其基本语法如下:

x,y,w,h = cv2.boundingRect(cnt)

其中, cnt 表示输入的轮廓序列,(x, y) 表示外接矩形左上角的坐标,w 和 h 表示外接矩形的宽度和高度,可用于计算物体的尺寸。

下面是一个计算图像外接矩形并绘制的示例代码:

import cv2

# 读入图像
img = cv2.imread("example.jpg")

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化处理
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

# 计算轮廓和边框
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnt = contours[0]
x,y,w,h = cv2.boundingRect(cnt)

# 绘制外接矩形
cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)

# 显示图像
cv2.imshow("image", img)
cv2.waitKey()
cv2.destroyAllWindows()

在本示例代码中,我们先读入一张图像,然后将其转换为灰度图像,再使用 OTSU 算法进行二值化处理。接着,使用 cv2.findContours 函数计算图像的轮廓,选择轮廓序列中的第一个轮廓进行计算,然后使用 cv2.boundingRect 函数计算外接矩形的坐标和尺寸。最后,使用 cv2.rectangle 函数绘制外接矩形,并显示图像。

五、计算图像的最小矩形

在前面提到的轮廓的外接矩形只是一种简单的矩形包围,如果想更准确地包围物体,可以使用轮廓的最小矩形。最小矩形是指能够恰好包围住整个轮廓的最小矩形,它拥有与轮廓形状更加接近的外形。

使用 cv2.minAreaRect 函数可以计算图像的最小矩形。该函数的基本语法如下:

rect = cv2.minAreaRect(cnt)

其中, cnt 表示输入的轮廓序列, rect 表示返回的最小矩形信息,包括中心点坐标、宽度、高度和旋转角度。

下面是一个计算图像最小矩形并绘制的示例代码:

import cv2

# 读入图像
img = cv2.imread("example.jpg")

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化处理
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

# 计算轮廓和最小矩形
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnt = contours[0]
rect = cv2.minAreaRect(cnt)
box = cv2.boxPoints(rect)
box = np.int0(box)

# 绘制最小矩形
cv2.drawContours(img,[box],0,(0,0,255),2)

# 显示图像
cv2.imshow("image", img)
cv2.waitKey()
cv2.destroyAllWindows()

在本示例代码中,我们先读入一张图像,然后将其转换为灰度图像,再使用 OTSU 算法进行二值化处理。接着,使用 cv2.findContours 函数计算图像的轮廓,选择轮廓序列中的第一个轮廓进行计算,然后使用 cv2.minAreaRect 函数计算最小矩形的信息。最后,使用 cv2.drawContours 函数绘制最小矩形,并显示图像。

原创文章,作者:KYAXI,如若转载,请注明出处:https://www.506064.com/n/371268.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
KYAXIKYAXI
上一篇 2025-04-23 00:48
下一篇 2025-04-23 00:48

相关推荐

  • 深入解析Vue3 defineExpose

    Vue 3在开发过程中引入了新的API `defineExpose`。在以前的版本中,我们经常使用 `$attrs` 和` $listeners` 实现父组件与子组件之间的通信,但…

    编程 2025-04-25
  • 深入理解byte转int

    一、字节与比特 在讨论byte转int之前,我们需要了解字节和比特的概念。字节是计算机存储单位的一种,通常表示8个比特(bit),即1字节=8比特。比特是计算机中最小的数据单位,是…

    编程 2025-04-25
  • 深入理解Flutter StreamBuilder

    一、什么是Flutter StreamBuilder? Flutter StreamBuilder是Flutter框架中的一个内置小部件,它可以监测数据流(Stream)中数据的变…

    编程 2025-04-25
  • 深入探讨OpenCV版本

    OpenCV是一个用于计算机视觉应用程序的开源库。它是由英特尔公司创建的,现已由Willow Garage管理。OpenCV旨在提供一个易于使用的计算机视觉和机器学习基础架构,以实…

    编程 2025-04-25
  • 深入了解scala-maven-plugin

    一、简介 Scala-maven-plugin 是一个创造和管理 Scala 项目的maven插件,它可以自动生成基本项目结构、依赖配置、Scala文件等。使用它可以使我们专注于代…

    编程 2025-04-25
  • 深入了解LaTeX的脚注(latexfootnote)

    一、基本介绍 LaTeX作为一种排版软件,具有各种各样的功能,其中脚注(footnote)是一个十分重要的功能之一。在LaTeX中,脚注是用命令latexfootnote来实现的。…

    编程 2025-04-25
  • 深入理解Python字符串r

    一、r字符串的基本概念 r字符串(raw字符串)是指在Python中,以字母r为前缀的字符串。r字符串中的反斜杠(\)不会被转义,而是被当作普通字符处理,这使得r字符串可以非常方便…

    编程 2025-04-25
  • 深入剖析MapStruct未生成实现类问题

    一、MapStruct简介 MapStruct是一个Java bean映射器,它通过注解和代码生成来在Java bean之间转换成本类代码,实现类型安全,简单而不失灵活。 作为一个…

    编程 2025-04-25
  • 深入了解Python包

    一、包的概念 Python中一个程序就是一个模块,而一个模块可以引入另一个模块,这样就形成了包。包就是有多个模块组成的一个大模块,也可以看做是一个文件夹。包可以有效地组织代码和数据…

    编程 2025-04-25
  • 深入探讨冯诺依曼原理

    一、原理概述 冯诺依曼原理,又称“存储程序控制原理”,是指计算机的程序和数据都存储在同一个存储器中,并且通过一个统一的总线来传输数据。这个原理的提出,是计算机科学发展中的重大进展,…

    编程 2025-04-25

发表回复

登录后才能评论