一、什么是全局路径规划
全局路径规划是指在给定的地图中,通过使用搜索算法和路径规划算法,寻找从起点到目标点的最佳路径,并将其转换为机器人可以遵循的指令序列,使得机器人能够在给定地图上避开障碍物,沿最优路径到达目标点。
全局路径规划通常用于自动驾驶车辆、无人机及移动机器人等领域,在实际应用中起到了重要的作用。
二、全局路径规划的算法
1. Dijkstra算法
Dijkstra算法是一种常见的最短路径搜索算法,适用于无权图或者权值都为正数的图。它以起点为中心向外层层扩展,直到扩展到目标点位置。
def dijkstra(graph, start, end):
#初始化
inf = float('inf')
distance = {vertex: inf for vertex in graph}
path = {vertex: [] for vertex in graph}
visited = []
queue = [start]
distance[start] = 0
#搜索
while queue:
current = queue.pop(0)
visited.append(current)
if current == end:
break
for neighbor in graph[current]:
if neighbor not in visited:
new_distance = distance[current] + graph[current][neighbor]
if new_distance < distance[neighbor]:
distance[neighbor] = new_distance
path[neighbor] = path[current] + [current]
queue.append(neighbor)
return path[end] + [end]
2. A*算法
A*算法结合了Dijkstra算法和启发式函数(Heuristic Function)的思想,在搜索过程中通过评估函数评估某个节点是否为最优解。它适用于连续空间的最短路径规划,具有搜索速度快、路径优秀等优点。
def heuristic(node1, node2):
#曼哈顿距离
return abs(node1.x - node2.x) + abs(node1.y - node2.y)
def a_star(start, end):
#初始化
open_list = [start]
closed_list = []
start.g = 0
start.f = start.h = heuristic(start, end)
#搜索
while open_list:
current = min(open_list, key = lambda x:x.f)
if current == end:
path = []
while current.parent != None:
path.append(current)
current = current.parent
path.append(start)
path.reverse()
return path
open_list.remove(current)
closed_list.append(current)
for neighbor in current.adjacent:
if neighbor in closed_list:
continue
if neighbor not in open_list:
neighbor.g = current.g + heuristic(current, neighbor)
neighbor.h = heuristic(neighbor, end)
neighbor.f = neighbor.g + neighbor.h
neighbor.parent = current
open_list.append(neighbor)
else:
new_g = current.g + heuristic(current, neighbor)
if neighbor.g > new_g:
neighbor.g = new_g
neighbor.f = neighbor.g + neighbor.h
neighbor.parent = current
return None
三、实例
下面是一个简单的例子,给定一个地图和起点终点,使用A*算法寻找最优路径。
class Node:
def __init__(self, value, x, y):
self.value = value
self.x = x
self.y = y
self.adjacent = []
self.parent = None
self.f = 0
self.g = 0
self.h = 0
def create_graph(grid):
height = len(grid)
width = len(grid[0])
graph = {}
for i in range(height):
for j in range(width):
node = Node(grid[i][j], i, j)
if i+1 < height and grid[i+1][j] != "#":
node.adjacent.append(Node(grid[i+1][j], i+1, j))
if j+1 < width and grid[i][j+1] != "#":
node.adjacent.append(Node(grid[i][j+1], i, j+1))
graph[(i, j)] = node
return graph
grid = [
["S", 0, 0, "#"],
[0, "#", 0, "#"],
["#", 0, 0, 0],
["#", "#", 0, "E"]
]
graph = create_graph(grid)
start = graph[(0, 0)]
end = graph[(3, 3)]
print(a_star(start, end))
四、总结
全局路径规划是自动驾驶车辆、无人机等移动机器人领域必备的技术之一,Dijkstra算法、A*算法是其中常用的两种算法,它们都可以用来寻找起点到目标点的最短路径。对于不同场景可以根据需要选择不同的算法进行路径规划。
原创文章,作者:DVDOR,如若转载,请注明出处:https://www.506064.com/n/332598.html
微信扫一扫
支付宝扫一扫