RetinaNet是Focal Loss for Dense Object Detection这篇论文中提出的一种目标检测网络结构,该网络结构在相同的精度情况下提高了训练速度。RetinaNet基于Focal Loss分类器来加强正样本和负样本之间的区分度,同时引入了Focal Loss检测器来提高检测器的灵敏度。以下是RetinaNet网络结构的详细解析。
一、Anchor-based检测器
RetinaNet的目标检测器是一种Anchor-based检测器,其中Anchor是指在输入图像中的一组预先定义的框(或称锚定框),每个框都是有关尺度和长宽比的离散集合。框与像素之间的映射是通过网络中最后一个卷积层完成的,它将卷积层的特征图与原始输入图像之间生成了一个映射。检测器针对每个Anchor框执行了两个任务:首先,预测所属类别的概率值;其次,预测框向真实边界框的偏移量。在训练期间,对于每个Anchor框,如果预测结果与真实框匹配,则该Anchor框被视为正样本,否则该Anchor框被视为负样本。这种Anchor-based方法使模型可以对不同数量和尺度的物体进行识别和分割。
下面是RetinaNet的Anchor-based检测器的代码实现:
class RetinaNet(nn.Module): def __init__(self): super(RetinaNet, self).__init__() self.fpn = FPN() self.cls_head = ClsHead() self.reg_head = RegHead() def forward(self, x): out = self.fpn(x) cls_out = [] reg_out = [] for feature in out: cls_out.append(self.cls_head(feature)) reg_out.append(self.reg_head(feature)) return tuple(cls_out), tuple(reg_out)
二、Focal Loss分类器
Focal Loss是针对目标检测任务的一种修改后的二分类损失函数,它通过加权函数来缓解分类器在面对大量简单负样本(例如背景)时的鲁棒性问题。具体来说,该权重函数主要是在标准交叉熵损失中引入一个可调参数,该参数控制与正确分类相关的样本的权重值。当$\alpha$=0.5时,该权重函数将标准交叉熵损失还原为通用的交叉熵损失。Focal Loss通过对易分类的样本进行降权来使分类器更加关注难分类的样本。
下面是RetinaNet考虑Focal Loss的分类器的代码实现:
class FocalLoss(nn.Module): def __init__(self, alpha=0.25, gamma=2, reduction='mean'): super(FocalLoss, self).__init__() self.alpha = alpha self.gamma = gamma self.reduction = reduction def forward(self, cls_pred, cls_targets): pos_inds = cls_targets > 0 neg_inds = cls_targets == 0 pos_pred = cls_pred[pos_inds] neg_pred = cls_pred[neg_inds] pos_loss = -pos_pred.log() * (1 - pos_pred) ** self.gamma * self.alpha neg_loss = -neg_pred.log() * (neg_pred) ** self.gamma * (1 - self.alpha) if self.reduction == 'mean': num_pos = pos_inds.float().sum() pos_loss = pos_loss.sum() neg_loss = neg_loss.sum() loss = (pos_loss + neg_loss) / num_pos.clamp(min=1) else: loss = pos_loss.sum() + neg_loss.sum() return loss
三、Focal Loss检测器
RetinaNet引入了一个新的检测器,称为Focal Loss检测器,该检测器与Focal Loss分类器共同作用。具体来说,RetinaNet的Focal Loss检测器在分类时考虑了Focal Loss,这意味着该检测器在面对难分类样本时会更加关注,而忽略容易分类的样本。
下面是RetinaNet的Focal Loss检测器的代码实现:
class FocalLossDetection(nn.Module): def __init__(self, alpha=0.25, gamma=2, reduction='mean'): super(FocalLossDetection, self).__init__() self.cls_loss = FocalLoss(alpha, gamma, reduction=reduction) self.reg_loss = nn.SmoothL1Loss(reduction=reduction) def forward(self, cls_out, reg_out, cls_targets, reg_targets): cls_losses = [] reg_losses = [] for cls_pred, reg_pred, cls_target, reg_target, in zip(cls_out, reg_out, cls_targets, reg_targets): pos_inds = cls_target > 0 num_pos = pos_inds.float().sum() cls_loss = self.cls_loss(cls_pred, cls_target) reg_loss = self.reg_loss(pos_pred, pos_target, ) cls_losses.append(cls_loss) reg_losses.append(reg_loss) cls_loss = sum(cls_losses) / len(cls_losses) reg_loss = sum(reg_losses) / len(reg_losses) loss = cls_loss + reg_loss return loss
四、RetinaNet网络结构整合
最后,我们将RetinaNet网络结构从头到尾地整理一遍。整个网络结构包括了FPN、ClsHead、RegHead、Focal Loss和Smooth L1损失。其中,FPN生成了多个特征层,而ClsHead和RegHead分别预测类别概率和边框偏移。Focal Loss和Smooth L1损失作为网络的训练损失函数。
下面是整合后的RetinaNet网络结构代码实现:
class FPN(nn.Module): def __init__(self): super(FPN, self).__init__() self.conv6 = nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1) self.conv7 = nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1) self.conv8 = nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1) self.conv9 = nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1) self.latent3 = nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0) self.latent4 = nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0) self.latent5 = nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0) self.pred3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.pred4 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.pred5 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) def forward(self, x): conv3, conv4, conv5, conv6, conv7, conv8, conv9 = x lat3 = self.latent3(conv3) lat4 = self.latent4(conv4) lat5 = self.latent5(conv5) p5 = self.pred5(lat5) p4 = self.pred4(lat4 + F.interpolate(p5, size=lat4.size()[-2:], mode='nearest')) p3 = self.pred3(lat3 + F.interpolate(p4, size=lat3.size()[-2:], mode='nearest')) p6 = self.conv6(conv6) p7 = self.conv7(F.relu(p6)) p8 = self.conv8(F.relu(p7)) p9 = self.conv9(F.relu(p8)) return p3, p4, p5, p6, p7, p8, p9 class ClsHead(nn.Module): def __init__(self): super(ClsHead, self).__init__() self.output = nn.Conv2d(256, 9, kernel_size=3, stride=1, padding=1) def forward(self, x): x = self.output(x) x = x.permute(0, 2, 3, 1) x = x.reshape(x.shape[0], -1, 1) return x class RegHead(nn.Module): def __init__(self): super(RegHead, self).__init__() self.output = nn.Conv2d(256, 36, kernel_size=3, stride=1, padding=1) def forward(self, x): x = self.output(x) x = x.permute(0, 2, 3, 1) x = x.reshape(x.shape[0], -1, 4) return x class RetinaNet(nn.Module): def __init__(self): super(RetinaNet, self).__init__() self.fpn = FPN() self.cls_head = ClsHead() self.reg_head = RegHead() self.focal_loss_detection = FocalLossDetection() def forward(self, x, cls_targets, reg_targets): out = self.fpn(x) cls_out = [] reg_out = [] for feature in out: cls_out.append(self.cls_head(feature)) reg_out.append(self.reg_head(feature)) loss = self.focal_loss_detection(cls_out, reg_out, cls_targets, reg_targets) return loss, cls_out, reg_out
原创文章,作者:OLFBZ,如若转载,请注明出处:https://www.506064.com/n/313384.html