深度学习网络resnet34详解

一、介绍

残差网络(ResNet)是由何凯明等人提出的一种深层神经网络。ResNet在网络加深的同时,可以解决由梯度消失或爆炸而导致的精度下降问题。其中resnet34是ResNet中比较简单的一个版本,只有34层深度。ResNet34在计算机视觉领域应用广泛,如图像分类、物体检测和分割等。

二、原理

ResNet的主要思想是通过引入残差模块(residual block)来加深网络,残差模块和普通的卷积模块相比,其主要区别在于在每一个卷积层之后都有直接的连接(shortcut connection)来 bypass 原本的卷积输出。

这种直接连接可以理解为是一条跨层连接的捷径,保证了网络的信息流畅性。用公式表示如下:

其中H(X)代表residual block输出,F(X)代表输入经过两个卷积之后的结果,W是权重,b是偏差(bias),后面的权重是可学习的。 X+H(X) 是shortcut connection。

ResNet 使用的 residual block 是基于两个 3×3 卷积层和一个跨层连接的模块,我们称之为 Residual Unit 。如下图所示:

其中的 shortcut connection,即跨层连接,可以有两种形式:addition 和 projection shortcut。

addition shortcut 如图:

而 projection shortcut 如图:

三、代码实现

下面是使用PyTorch实现resnet34的代码。首先要导入必要的库:

import torch.nn as nn
import torch.utils.model_zoo as model_zoo
import torch.nn.functional as F
import torch

__all__ = ['ResNet', 'resnet34']

model_urls = {
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
}

def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)

def conv1x1(in_planes, out_planes, stride=1):
    "1x1 convolution"
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)

class BasicBlock(nn.Module):
    expansion = 1
    
    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride
    
    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        
        # 判断是否需要downsample操作
        if self.downsample is not None:
            identity = self.downsample(x)
        
        out += identity
        out = self.relu(out)

        return out

class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
        super(ResNet, self).__init__()
        self.inplanes = 64
        
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
        
        # 零初始化最后一层的权重
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)
                elif isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
    
    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)
    
    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

        return x

def _resnet(arch, block, layers, pretrained, progress, **kwargs):
    model = ResNet(block, layers, **kwargs)
    if pretrained:
        state_dict = model_zoo.load_url(model_urls[arch], progress=progress)
        model.load_state_dict(state_dict)
    return model

def resnet34(pretrained=False, progress=True, **kwargs):
    return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs)

四、应用与拓展

ResNet的应用非常广泛,除了在计算机视觉领域,也被用作自然语言处理和语音识别等其他领域。除了resnet34,还有resnet50、resnet101等版本,可以根据任务的复杂度选择适合的版本。在实际应用中,可以通过fine-tuning、数据增强等方法对ResNet进行拓展,提高其在特定任务上的表现。

原创文章,作者:小蓝,如若转载,请注明出处:https://www.506064.com/n/307491.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
小蓝小蓝
上一篇 2025-01-02 18:16
下一篇 2025-01-02 18:16

相关推荐

  • 使用Netzob进行网络协议分析

    Netzob是一款开源的网络协议分析工具。它提供了一套完整的协议分析框架,可以支持多种数据格式的解析和可视化,方便用户对协议数据进行分析和定制。本文将从多个方面对Netzob进行详…

    编程 2025-04-29
  • 深度查询宴会的文化起源

    深度查询宴会,是指通过对一种文化或主题的深度挖掘和探究,为参与者提供一次全方位的、深度体验式的文化品尝和交流活动。本文将从多个方面探讨深度查询宴会的文化起源。 一、宴会文化的起源 …

    编程 2025-04-29
  • 微软发布的网络操作系统

    微软发布的网络操作系统指的是Windows Server操作系统及其相关产品,它们被广泛应用于企业级云计算、数据库管理、虚拟化、网络安全等领域。下面将从多个方面对微软发布的网络操作…

    编程 2025-04-28
  • Python下载深度解析

    Python作为一种强大的编程语言,在各种应用场景中都得到了广泛的应用。Python的安装和下载是使用Python的第一步,对这个过程的深入了解和掌握能够为使用Python提供更加…

    编程 2025-04-28
  • 蒋介石的人际网络

    本文将从多个方面对蒋介石的人际网络进行详细阐述,包括其对政治局势的影响、与他人的关系、以及其在历史上的地位。 一、蒋介石的政治影响 蒋介石是中国现代历史上最具有政治影响力的人物之一…

    编程 2025-04-28
  • 基于tcifs的网络文件共享实现

    tcifs是一种基于TCP/IP协议的文件系统,可以被视为是SMB网络文件共享协议的衍生版本。作为一种开源协议,tcifs在Linux系统中得到广泛应用,可以实现在不同设备之间的文…

    编程 2025-04-28
  • 如何开发一个网络监控系统

    网络监控系统是一种能够实时监控网络中各种设备状态和流量的软件系统,通过对网络流量和设备状态的记录分析,帮助管理员快速地发现和解决网络问题,保障整个网络的稳定性和安全性。开发一套高效…

    编程 2025-04-27
  • Python递归深度用法介绍

    Python中的递归函数是一个函数调用自身的过程。在进行递归调用时,程序需要为每个函数调用开辟一定的内存空间,这就是递归深度的概念。本文将从多个方面对Python递归深度进行详细阐…

    编程 2025-04-27
  • 用Python爬取网络女神头像

    本文将从以下多个方面详细介绍如何使用Python爬取网络女神头像。 一、准备工作 在进行Python爬虫之前,需要准备以下几个方面的工作: 1、安装Python环境。 sudo a…

    编程 2025-04-27
  • 网络拓扑图的绘制方法

    在计算机网络的设计和运维中,网络拓扑图是一个非常重要的工具。通过拓扑图,我们可以清晰地了解网络结构、设备分布、链路情况等信息,从而方便进行故障排查、优化调整等操作。但是,要绘制一张…

    编程 2025-04-27

发表回复

登录后才能评论