和js快速排序伪代码相关的问题(用伪代码写出快速排序)

本文目录一览:

nodejs实现冒泡排序和快速排序

冒泡排序:双层循环,内部循环每次选出最大值或者最小值,放到头上或者放在尾部

快速排序:递归调用,每次递归选出一个“中值”,头部和尾部分别跟“中值”比较,找出可交换值后交换位置。每次交换后,数组的逆序减少比其他排序算法要多,所以相对比较快

快速排序算法的示例代码

    using System;     using System.Collections.Generic;     using System.Linq;     using System.Text;    namespace test{    class QuickSort    {        static void Main(string[] args)        {            int[] array = { 49, 38, 65, 97, 76, 13, 27 };            sort(array, 0, array.Length – 1);            Console.ReadLine();        }        /**一次排序单元,完成此方法,key左边都比key小,key右边都比key大。         **@param array排序数组          **@param low排序起始位置          **@param high排序结束位置         **@return单元排序后的数组 */        private static int sortUnit(int[] array, int low, int high)        {            int key = array[low];            while (low  high)            {                /*从后向前搜索比key小的值*/                while (array[high] = key  high  low)                    –high;                 /*比key小的放左边*/                array[low] = array[high];                   /*从前向后搜索比key大的值,比key大的放右边*/                while (array[low] = key  high  low)                    ++low;                 /*比key大的放右边*/                array[high] = array[low];            }            /*左边都比key小,右边都比key大。//将key放在游标当前位置。//此时low等于high */            array[low] = key;            foreach (int i in array)            {                Console.Write({0}\t, i);            }            Console.WriteLine();            return high;        }            /**快速排序 *@paramarry *@return */        public static void sort(int[] array, int low, int high)        {            if (low = high)                return;             /*完成一次单元排序*/            int index = sortUnit(array, low, high);             /*对左边单元进行排序*/            sort(array, low, index – 1);            /*对右边单元进行排序*/            sort(array, index + 1, high);        }    }} 运行结果:27 38 13 49 76 97 65

13 27 38 49 76 97 6513 27 38 49 65 76 97

快速排序就是递归调用此过程——在以49为中点分割这个数据序列,分别对前面一部分和后面一部分进行类似的快速排序,从而完成全部数据序列的快速排序,最后把此数据序列变成一个有序的序列,根据这种思想对于上述数组A的快速排序的全过程如图6所示:

初始状态 {49 38 65 97 76 13 27} 进行一次快速排序之后划分为 {27 38 13} 49 {76 97 65} 分别对前后两部分进行快速排序{27 38 13} 经第三步和第四步交换后变成 {13 27 38} 完成排序。{76 97 65} 经第三步和第四步交换后变成 {65 76 97} 完成排序。图示 快速排序的最坏情况基于每次划分对主元的选择。基本的快速排序选取第一个元素作为主元。这样在数组已经有序的情况下,每次划分将得到最坏的结果。一种比较常见的优化方法是随机化算法,即随机选取一个元素作为主元。这种情况下虽然最坏情况仍然是O(n^2),但最坏情况不再依赖于输入数据,而是由于随机函数取值不佳。实际上,随机化快速排序得到理论最坏情况的可能性仅为1/(2^n)。所以随机化快速排序可以对于绝大多数输入数据达到O(nlogn)的期望时间复杂度。一位前辈做出了一个精辟的总结:“随机化快速排序可以满足一个人一辈子的人品需求。”

随机化快速排序的唯一缺点在于,一旦输入数据中有很多的相同数据,随机化的效果将直接减弱。对于极限情况,即对于n个相同的数排序,随机化快速排序的时间复杂度将毫无疑问的降低到O(n^2)。解决方法是用一种方法进行扫描,使没有交换的情况下主元保留在原位置。 QUICKSORT(A,p,r)

1 if pr

2 then q ←PARTITION(A,p,r)

3 QUICKSORT(A,p,q-1)

4 QUICKSORT(A,q+1,r)

为排序一个完整的数组A,最初的调用是QUICKSORT(A,1,length[A])。

快速排序算法的关键是PARTITION过程,它对子数组A[p..r]进行就地重排:

PARTITION(A,p,r)

1 x←A[r]

2 i←p-1

3 for j←p to r-1

4 do if A[j]≤x

5 then i←i+1

6 exchange A[i]←→A[j]

7 exchange A[i+1]←→A[r]

8 return i+1 对PARTITION和QUICKSORT所作的改动比较小。在新的划分过程中,我们在真正进行划分之前实现交换:

(其中PARTITION过程同快速排序伪代码(非随机))

RANDOMIZED-PARTITION(A,p,r)

1 i← RANDOM(p,r)

2 exchange A[r]←→A[i]

3 return PARTITION(A,p,r)

新的快速排序过程不再调用PARTITION,而是调用RANDOMIZED-PARTITION。

RANDOMIZED-QUICKSORT(A,p,r)

1 if pr

2 then q← RANDOMIZED-PARTITION(A,p,r)

3 RANDOMIZED-QUICKSORT(A,p,q-1)

4 RANDOMIZED-QUICKSORT(A,q+1,r) 这里为方便起见,我们假设算法Quick_Sort的范围阈值为1(即一直将线性表分解到只剩一个元素),这对该算法复杂性的分析没有本质的影响。

我们先分析函数partition的性能,该函数对于确定的输入复杂性是确定的。观察该函数,我们发现,对于有n个元素的确定输入L[p..r],该函数运行时间显然为θ(n)。

最坏情况

无论适用哪一种方法来选择pivot,由于我们不知道各个元素间的相对大小关系(若知道就已经排好序了),所以我们无法确定pivot的选择对划分造成的影响。因此对各种pivot选择法而言,最坏情况和最好情况都是相同的。

我们从直觉上可以判断出最坏情况发生在每次划分过程产生的两个区间分别包含n-1个元素和1个元素的时候(设输入的表有n个元素)。下面我们暂时认为该猜测正确,在后文我们再详细证明该猜测。

对于有n个元素的表L[p..r],由于函数Partition的计算时间为θ(n),所以快速排序在序坏情况下的复杂性有递归式如下:

T(1)=θ(1),T(n)=T(n-1)+T(1)+θ(n) (1)

用迭代法可以解出上式的解为T(n)=θ(n2)。

这个最坏情况运行时间与插入排序是一样的。

下面我们来证明这种每次划分过程产生的两个区间分别包含n-1个元素和1个元素的情况就是最坏情况。

设T(n)是过程Quick_Sort作用于规模为n的输入上的最坏情况的时间,则

T(n)=max(T(q)+T(n-q))+θ(n),其中1≤q≤n-1 (2)

我们假设对于任何kn,总有T(k)≤ck,其中c为常数;显然当k=1时是成立的。

将归纳假设代入(2),得到:

T(n)≤max(cq2+c(n-q)2)+θ(n)=c*max(q2+(n-q)2)+θ(n)

因为在[1,n-1]上q2+(n-q)2关于q递减,所以当q=1时q2+(n-q)2有最大值n2-2(n-1)。于是有:

T(n)≤cn2-2c(n-1)+θ(n)≤cn2

只要c足够大,上面的第二个小于等于号就可以成立。于是对于所有的n都有T(n)≤cn。

这样,排序算法的最坏情况运行时间为θ(n2),且最坏情况发生在每次划分过程产生的两个区间分别包含n-1个元素和1个元素的时候。

时间复杂度为o(n2)。

最好情况

如果每次划分过程产生的区间大小都为n/2,则快速排序法运行就快得多了。这时有:

T(n)=2T(n/2)+θ(n),T(1)=θ(1) (3)

解得:T(n)=θ(nlogn)

快速排序法最佳情况下执行过程的递归树如下图所示,图中lgn表示以10为底的对数,而本文中用logn表示以2为底的对数.

由于快速排序法也是基于比较的排序法,其运行时间为Ω(nlogn),所以如果每次划分过程产生的区间大小都为n/2,则运行时间θ(nlogn)就是最好情况运行时间。

但是,是否一定要每次平均划分才能达到最好情况呢?要理解这一点就必须理解对称性是如何在描述运行时间的递归式中反映的。我们假设每次划分过程都产生9:1的划分,乍一看该划分很不对称。我们可以得到递归式:

T(n)=T(n/10)+T(9n/10)+θ(n),T(1)=θ(1) (4)

请注意树的每一层都有代价n,直到在深度log10n=θ(logn)处达到边界条件,以后各层代价至多为n。递归于深度log10/9n=θ(logn)处结束。这样,快速排序的总时间代价为T(n)=θ(nlogn),从渐进意义上看就和划分是在中间进行的一样。事实上,即使是99:1的划分时间代价也为θ(nlogn)。其原因在于,任何一种按常数比例进行划分所产生的递归树的深度都为θ(nlogn),其中每一层的代价为O(n),因而不管常数比例是什么,总的运行时间都为θ(nlogn),只不过其中隐含的常数因子有所不同。(关于算法复杂性的渐进阶,请参阅算法的复杂性)

平均情况

快速排序的平均运行时间为θ(nlogn)。

我们对平均情况下的性能作直觉上的分析。

要想对快速排序的平均情况有个较为清楚的概念,我们就要对遇到的各种输入作个假设。通常都假设输入数据的所有排列都是等可能的。后文中我们要讨论这个假设。

当我们对一个随机的输入数组应用快速排序时,要想在每一层上都有同样的划分是不太可能的。我们所能期望的是某些划分较对称,另一些则很不对称。事实上,我们可以证明,如果选择L[p..r]的第一个元素作为支点元素,Partition所产生的划分80%以上都比9:1更对称,而另20%则比9:1差,这里证明从略。

平均情况下,Partition产生的划分中既有“好的”,又有“差的”。这时,与Partition执行过程对应的递归树中,好、差划分是随机地分布在树的各层上的。为与我们的直觉相一致,假设好、差划分交替出现在树的各层上,且好的划分是最佳情况划分,而差的划分是最坏情况下的划分。在根节点处,划分的代价为n,划分出来的两个子表的大小为n-1和1,即最坏情况。在根的下一层,大小为n-1的子表按最佳情况划分成大小各为(n-1)/2的两个子表。这儿我们假设含1个元素的子表的边界条件代价为1。

在一个差的划分后接一个好的划分后,产生出三个子表,大小各为1,(n-1)/2和(n-1)/2,代价共为2n-1=θ(n)。一层划分就产生出大小为(n-1)/2+1和(n-1)/2的两个子表,代价为n=θ(n)。这种划分差不多是完全对称的,比9:1的划分要好。从直觉上看,差的划分的代价θ(n)可被吸收到好的划分的代价θ(n)中去,结果是一个好的划分。这样,当好、差划分交替分布划分都是好的一样:仍是θ(nlogn),但θ记号中隐含的常数因子要略大一些。关于平均情况的严格分析将在后文给出。

在前文从直觉上探讨快速排序的平均性态过程中,我们已假定输入数据的所有排列都是等可能的。如果输入的分布满足这个假设时,快速排序是对足够大的输入的理想选择。但在实际应用中,这个假设就不会总是成立。

解决的方法是,利用随机化策略,能够克服分布的等可能性假设所带来的问题。

一种随机化策略是:与对输入的分布作“假设”不同的是对输入的分布作“规定”。具体地说,在排序输入的线性表前,对其元素加以随机排列,以强制的方法使每种排列满足等可能性。事实上,我们可以找到一个能在O(n)时间内对含n个元素的数组加以随机排列的算法。这种修改不改变算法的最坏情况运行时间,但它却使得运行时间能够独立于输入数据已排序的情况。

另一种随机化策略是:利用前文介绍的选择支点元素pivot的第四种方法,即随机地在L[p..r]中选择一个元素作为支点元素pivot。实际应用中通常采用这种方法。

快速排序的随机化版本有一个和其他随机化算法一样的有趣性质:没有一个特别的输入会导致最坏情况性态。这种算法的最坏情况性态是由随机数产生器决定的。你即使有意给出一个坏的输入也没用,因为随机化排列会使得输入数据的次序对算法不产生影响。只有在随机数产生器给出了一个很不巧的排列时,随机化算法的最坏情况性态才会出现。事实上可以证明几乎所有的排列都可使快速排序接近平均情况性态,只有非常少的几个排列才会导致算法的近最坏情况性态。

一般来说,当一个算法可按多条路子做下去,但又很难决定哪一条保证是好的选择时,随机化策略是很有用的。如果大部分选择都是好的,则随机地选一个就行了。通常,一个算法在其执行过程中要做很多选择。如果一个好的选择的获益大于坏的选择的代价,那么随机地做一个选择就能得到一个很有效的算法。我们在前文已经了解到,对快速排序来说,一组好坏相杂的划分仍能产生很好的运行时间 。因此我们可以认为该算法的随机化版本也能具有较好的性态。

想问您一些排序算法的伪代码,谢啦

冒泡排序:网页链接

所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。排序算法,就是如何使得记录按照要求排列的方法。排序算法在很多领域得到相当地重视,尤其是在大量数据的处理方面。一个优秀的算法可以节省大量的资源。在各个领域中考虑到数据的各种限制和规范,要得到一个符合实际的优秀算法,得经过大量的推理和分析。

C++自带的algorithm库函数中提供了排序算法。

稳定的

冒泡排序(bubble sort) — O(n^2)

鸡尾酒排序(Cocktail sort,双向的冒泡排序) — O(n^2)

插入排序(insertion sort)— O(n^2)

桶排序(bucket sort)— O(n); 需要 O(k) 额外空间

计数排序(counting sort) — O(n+k); 需要 O(n+k) 额外空间

合并排序(merge sort)— O(nlog n); 需要 O(n) 额外空间

原地合并排序— O(n^2)

二叉排序树排序 (Binary tree sort) — O(nlog n)期望时间; O(n^2)最坏时间; 需要 O(n) 额外空间

鸽巢排序(Pigeonhole sort) — O(n+k); 需要 O(k) 额外空间

基数排序(radix sort)— O(n·k); 需要 O(n) 额外空间

Gnome 排序— O(n^2)

图书馆排序— O(nlog n) with high probability,需要 (1+ε)n额外空间

不稳定的

选择排序(selection sort)— O(n^2)

希尔排序(shell sort)— O(nlog n) 如果使用最佳的现在版本

组合排序— O(nlog n)

堆排序(heapsort)— O(nlog n)

平滑排序— O(nlog n)

快速排序(quicksort)— O(nlog n) 期望时间,O(n^2) 最坏情况; 对于大的、乱数列表一般相信是最快的已知排序

Introsort— O(nlog n)

耐心排序— O(nlog n+ k) 最坏情况时间,需要 额外的 O(n+ k) 空间,也需要找到最长的递增子串行(longest increasing subsequence)

不实用的

Bogo排序— O(n× n!) 期望时间,无穷的最坏情况。

Stupid sort— O(n^3); 递归版本需要 O(n^2) 额外存储器

珠排序(Bead sort) — O(n) or O(√n),但需要特别的硬件

Pancake sorting— O(n),但需要特别的硬件

stooge sort——O(n^2.7)很漂亮但是很耗时

原创文章,作者:小蓝,如若转载,请注明出处:https://www.506064.com/n/295865.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
小蓝小蓝
上一篇 2024-12-27 12:57
下一篇 2024-12-27 12:57

相关推荐

  • JS Proxy(array)用法介绍

    JS Proxy(array)可以说是ES6中非常重要的一个特性,它可以代理一个数组,监听数据变化并进行拦截、处理。在实际开发中,使用Proxy(array)可以方便地实现数据的监…

    编程 2025-04-29
  • Python周杰伦代码用法介绍

    本文将从多个方面对Python周杰伦代码进行详细的阐述。 一、代码介绍 from urllib.request import urlopen from bs4 import Bea…

    编程 2025-04-29
  • Python官网中文版:解决你的编程问题

    Python是一种高级编程语言,它可以用于Web开发、科学计算、人工智能等领域。Python官网中文版提供了全面的资源和教程,可以帮助你入门学习和进一步提高编程技能。 一、Pyth…

    编程 2025-04-29
  • Python字符串宽度不限制怎么打代码

    本文将为大家详细介绍Python字符串宽度不限制时如何打代码的几个方面。 一、保持代码风格的统一 在Python字符串宽度不限制的情况下,我们可以写出很长很长的一行代码。但是,为了…

    编程 2025-04-29
  • 如何解决WPS保存提示会导致宏不可用的问题

    如果您使用过WPS,可能会碰到在保存的时候提示“文件中含有宏,保存将导致宏不可用”的问题。这个问题是因为WPS在默认情况下不允许保存带有宏的文件,为了解决这个问题,本篇文章将从多个…

    编程 2025-04-29
  • Ojlat:一款快速开发Web应用程序的框架

    Ojlat是一款用于快速开发Web应用程序的框架。它的主要特点是高效、易用、可扩展且功能齐全。通过Ojlat,开发人员可以轻松地构建出高质量的Web应用程序。本文将从多个方面对Oj…

    编程 2025-04-29
  • Python基础代码用法介绍

    本文将从多个方面对Python基础代码进行解析和详细阐述,力求让读者深刻理解Python基础代码。通过本文的学习,相信大家对Python的学习和应用会更加轻松和高效。 一、变量和数…

    编程 2025-04-29
  • 仓库管理系统代码设计Python

    这篇文章将详细探讨如何设计一个基于Python的仓库管理系统。 一、基本需求 在着手设计之前,我们首先需要确定仓库管理系统的基本需求。 我们可以将需求分为以下几个方面: 1、库存管…

    编程 2025-04-29
  • Python满天星代码:让编程变得更加简单

    本文将从多个方面详细阐述Python满天星代码,为大家介绍它的优点以及如何在编程中使用。无论是刚刚接触编程还是资深程序员,都能从中获得一定的收获。 一、简介 Python满天星代码…

    编程 2025-04-29
  • 写代码新手教程

    本文将从语言选择、学习方法、编码规范以及常见问题解答等多个方面,为编程新手提供实用、简明的教程。 一、语言选择 作为编程新手,选择一门编程语言是很关键的一步。以下是几个有代表性的编…

    编程 2025-04-29

发表回复

登录后才能评论