包含python如何实现简单的验证码输入的词条

本文目录一览:

python如何识别验证码

我们首先识别最简单的一种验证码,即图形验证码。这种验证码最早出现,现在也很常见,一般由4位字母或者数字组成。例如,中国知网的注册页面有类似的验证码,页面如下所示:

表单中最后一项就是图形验证码,我们必须完全正确输入图中的字符才可以完成注册。

更多有关验证码的知识,可以参考这些文章:

Python3爬虫进阶:识别图形验证码

Python3爬虫进阶:识别极验滑动验证码

Python3爬虫进阶:识别点触点选验证码

Python3爬虫进阶:识别微博宫格验证码

·本节目标以知网的验证码为例,讲解利用OCR技术识别图形验证码的方法。

·准备工作识别图形验证码需要库tesserocr,以mac安装为例:在mac下,我们首先使用Homebrew安装ImageMagick和tesseract库:    brew install imagemagickbrew install tesseract 接下来再安装tesserocr即可:pip3 install tesserocr pillow这样我们就完成了            tesserocr的安装。

·获取验证码为了便于实验,我们先将验证码的图片保存到本地。打开开发者工具,找到验证码元素。验证码元素是一张图片,它的ser属    性是CheckCode.aspk。所以我们直接打开如下链接就可以看到一个验证码,右键保存即可,将其命名为code.jpg:

这样我们就得到一张验证码图片,以供测试识别使用。

相关推荐:《Python教程》

识别测试

接下来新建一个项目,将验证码图片放到项目根目录下,用tesserocr库识别该验证码,代码如下所示:

这里我们新建了一个Image对戏那个,调用了tesserocr的image_to_text( )方法。传入该Image对象即可完成识别,实现过程非常简单,结果如下:

我们可以看到,识别的结果和实际结果有偏差,这是因为验证码内的多余线条干扰了图片的识别。

另外,tesserocr还有一个更加简单的方法,这个方法可以直接将图片文件转为字符串,代码如下:

不过这种方法的识别效果不如上一种的好。

验证码处理

对于上面的图片,我们可以看到其实并没有完全识别正确,所以我们需要对图像作进一步的处理,如灰度转换、二值化等操作。

我们可以利用Image对象的convert( )方法参数传入L,即可将图片转化为灰度图像,代码如下:

传入1即可将图片进行二值化处理,如下所示:

我们还可以指定二值化的阈值。上面的方法采用的是默认阈值127。不过我们不能直接转化原图,要将原图先转化为灰度图像,然后再指定二值化阈值,代码如下:

在这里,变量threshold代表二值化阈值,阈值设置为160,之后我们来看看我们的结果:

我们可以看到现在的二维码就比较方便我们进行识别了;那么对于一些有干扰的图片,我们做一些灰度和二值化处理,这会提高图片识别的正确率。

如何利用Python做简单的验证码识别

先是获取验证码样本。。。我存了大概500个。

用dia测了测每个字之间的间距,直接用PIL开始切。

from PIL import Image

for j in range(0,500):

f=Image.open(“../test{}.jpg”.format(j))

for i in range(0,4):

f.crop((20+20*i,0,40+20*i,40)).save(“test{0}-{1}.jpg”.format(j,i+1))

上面一段脚本的意思是把jpg切成四个小块然后保存

之后就是二值化啦。

def TotallyShit(im):

x,y=im.size

mmltilist=list()

for i in range(x):

for j in range(y):

if im.getpixel((i,j))200:

mmltilist.append(1)

else:

mmltilist.append(0)

return mmltilist

咳咳,不要在意函数的名字。上面的一段代码的意思是遍历图片的每个像素点,颜色数值小于200的用1表示,其他的用0表示。

其中的im代表的是Image.open()类型。

切好的图片长这样的。

只能说这样切的图片还是很粗糙,很僵硬。

下面就是分类啦。

把0-9,“+”,”-“的图片挑好并放在不同的文件夹里面,这里就是纯体力活了。

再之后就是模型建立了。

这里我试了自己写的还有sklearn svm和sklearn neural_network。发现最后一个的识别正确率高的多。不知道是不是我样本问题QAQ。

下面是模型建立的代码

from sklearn.neural_network import MLPClassifier

import numpy as np

def clf():

clf=MLPClassifier()

mmltilist=list()

X=list()

for i in range(0,12):

for j in os.listdir(“douplings/douplings-{}”.format(i)):

mmltilist.append(TotallyShit(Image.open(“douplings/douplings-{0}/{1}”.format(i,j)).convert(“L”)))

X.append(i)

clf.fit(mmltilist,X)

return clf

大概的意思是从图片源中读取图片和label然后放到模型中去跑吧。

之后便是图像匹配啦。

def get_captcha(self):

with open(“test.jpg”,”wb”) as f:

f.write(self.session.get(self.live_captcha_url).content)

gim=Image.open(“test.jpg”).convert(“L”)

recognize_list=list()

for i in range(0,4):

part=TotallyShit(gim.crop((20+20*i,0,40+20*i,40)))

np_part_array=np.array(part).reshape(1,-1)

predict_num=int(self.clf.predict(np_part_array)[0])

if predict_num==11:

recognize_list.append(“+”)

elif predict_num==10:

recognize_list.append(“-“)

else:

recognize_list.append(str(predict_num))

return ”.join(recognize_list)

最后eval一下识别出来的字符串就得出结果了。。

顺便提一句现在的bilibili登陆改成rsa加密了,麻蛋,以前的脚本全部作废,心好痛。

登陆的代码。

import time

import requests

import rsa

r=requests.session()

data=r.get(“act=getkey_=”+str(int(time.time()*1000))).json()

pub_key=rsa.PublicKey.load_pkcs1_openssl_pem(data[‘key’])

payload = {

‘keep’: 1,

‘captcha’: ”,

‘userid’: “youruserid”,

‘pwd’: b64encode(rsa.encrypt((data[‘hash’] +”yourpassword”).encode(), pub_key)).decode(),

}

r.post(“”,data=payload)

selenium+python怎么模拟用户输入验证码登录

selenium模块调用浏览器chromdriver,这样就是一个可以看见的浏览器,用户可以手动的去填写验证码,然后下面就交给程序去操作了

如果你能采用图像识别,那就不需要用selenium了,用selenium在爬虫中主要目的是加载js文件,

如果能直接抓取登录接口,直接一个post就能搞定!!!

python简单验证码识别的实现过程

demo :

import pytesseract

from PIL import Image

image = Image.open(“captcha.png”)

print(pytesseract.image_to_string(image))

=================================================

=================================================中文识别

import pytesseract

from PIL import Image

image = Image.open(“00.jpg”)

print(pytesseract.image_to_string(image,lang=’chi_sim’))

有时候文本识别率并不高,建议图像识别前,先对图像进行灰度化和 二值化

效果如下(有时候第一次可能识别失败,可以写个循环逻辑让它多识别几次,一般程序运行1-3次基本会识别成功):

原创文章,作者:小蓝,如若转载,请注明出处:https://www.506064.com/n/295496.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
小蓝小蓝
上一篇 2024-12-27 12:56
下一篇 2024-12-27 12:56

相关推荐

  • Python简单数学计算

    本文将从多个方面介绍Python的简单数学计算,包括基础运算符、函数、库以及实际应用场景。 一、基础运算符 Python提供了基础的算术运算符,包括加(+)、减(-)、乘(*)、除…

    编程 2025-04-29
  • Python满天星代码:让编程变得更加简单

    本文将从多个方面详细阐述Python满天星代码,为大家介绍它的优点以及如何在编程中使用。无论是刚刚接触编程还是资深程序员,都能从中获得一定的收获。 一、简介 Python满天星代码…

    编程 2025-04-29
  • 如何实现图像粘贴到蒙版

    本文将从多个方面介绍图像粘贴到蒙版的实现方法。 一、创建蒙版 首先,在HTML中创建一个蒙版元素,用于接收要粘贴的图片。 <div id=”mask” style=”widt…

    编程 2025-04-29
  • Python海龟代码简单画图

    本文将介绍如何使用Python的海龟库进行简单画图,并提供相关示例代码。 一、基础用法 使用Python的海龟库,我们可以控制一个小海龟在窗口中移动,并利用它的“画笔”在窗口中绘制…

    编程 2025-04-29
  • Django ORM如何实现或的条件查询

    在我们使用Django进行数据库操作的时候,查询条件往往不止一个,一个好的查询语句需要考虑我们的查询要求以及业务场景。在实际工作中,我们经常需要使用或的条件进行查询,本文将详细介绍…

    编程 2025-04-29
  • Python樱花树代码简单

    本文将对Python樱花树代码进行详细的阐述和讲解,帮助读者更好地理解该代码的实现方法。 一、简介 樱花树是一种图形效果,它的实现方法比较简单。Python中可以通过turtle这…

    编程 2025-04-28
  • Python一次性输入10个数如何实现?

    Python提供了多种方法进行输入,可以手动逐个输入,也可以一次性输入多个数。在需要输入大量数据时,一次性输入十个数就非常方便。下面我们从多个方面来讲解如何一次性输入10个数。 一…

    编程 2025-04-28
  • Python大神作品:让编程变得更加简单

    Python作为一种高级的解释性编程语言,一直被广泛地运用于各个领域,从Web开发、游戏开发到人工智能,Python都扮演着重要的角色。Python的代码简洁明了,易于阅读和维护,…

    编程 2025-04-28
  • 用Python实现简单爬虫程序

    在当今时代,互联网上的信息量是爆炸式增长的,其中很多信息可以被利用。对于数据分析、数据挖掘或者其他一些需要大量数据的任务,我们可以使用爬虫技术从各个网站获取需要的信息。而Pytho…

    编程 2025-04-28
  • 如何实现van-picker点击遮罩不关闭

    van-picker是一个非常实用的Vue组件,但默认情况下,点击遮罩会自动关闭选择器。本文将介绍如何通过代码实现van-picker点击遮罩不关闭的功能。 一、通过覆盖遮罩实现 …

    编程 2025-04-27

发表回复

登录后才能评论