如何根据条件选择 Pandas 数据帧中的行

在本教程中,我们将学习用户如何使用 Python 基于条件选择 Pandas 数据帧中的行。

用户可以使用“>”、“=”、“< =”、“> =”、“!= ‘运算符。

条件:

我们将讨论适用于 Pandas 数据帧的不同条件。

条件 1:

使用基本方法从数据帧中选择“百分比”大于 70 的所有行。

代码:


# First, import pandas
import pandas as pnd
record_1 = {

 'Name_1': ['Anuj', 'Ashu', 'Yashi', 'Mark', 'Joshua', 'John', 'Ray', 'Lilly', 'Rose', 'Rachel' ],
 'Age_1': [23, 24, 21, 19, 21, 24, 25, 22, 23, 22],
 'Subjects_1': ['DBMS', 'ADS', 'ASPM', 'BCM', 'MFCS', 'ADS', 'ASPM', 'TOC', 'Data Mining', 'OOPS'],
 'Percentage_1': [88, 62, 85, 71, 55, 78, 70, 66, 71, 89] }

# Now, we are creating a dataframe
Data_Frame = pnd.DataFrame(record_1, columns = ['Name_1', 'Age_1', 'Subject_1', 'Percentage_1'])

print("Given DataFrame: \n", Data_Frame) 

# Then we will select rows based on condition
result_DataFrame = Data_Frame[Data_Frame['Percentage_1'] > 70]

print('\nFollowing is the Result DataFrame: \n', result_DataFrame)

输出:

Given DataFrame: 
    Name_1  Age_1   Subjects_1  Percentage_1
0    Anuj     23         DBMS            88
1    Ashu     24          ADS            62
2   Yashi     21         ASPM            85
3    Mark     19          BCM            71
4  Joshua     21         MFCS            55
5    John     24          ADS            78
6     Ray     25         ASPM            70
7   Lilly     22          TOC            66
8    Rose     23  Data Mining            71
9  Rachel     22         OOPS            89

Following is the Result DataFrame: 
    Name_1  Age_1   Subjects_1  Percentage_1
0    Anuj     23         DBMS            88
2   Yashi     21         ASPM            85
3    Mark     19          BCM            71
5    John     24          ADS            78
8    Rose     23  Data Mining            71
9  Rachel     22         OOPS            89

条件 2:

使用“ loc[] ”方法从数据帧中选择“百分比”大于 70 的所有行。

代码:


# First, import pandas
import pandas as pnd
record_1 = {

 'Name_1': ['Anuj', 'Ashu', 'Yashi', 'Mark', 'Joshua', 'John', 'Ray', 'Lilly', 'Rose', 'Rachel' ],
 'Age_1': [23, 24, 21, 19, 21, 24, 25, 22, 23, 22],
 'Subjects_1': ['DBMS', 'ADS', 'ASPM', 'BCM', 'MFCS', 'ADS', 'ASPM', 'TOC', 'Data Mining', 'OOPS'],
 'Percentage_1': [88, 62, 85, 71, 55, 78, 70, 66, 71, 89] }

# Now, we are creating a dataframe
Data_Frame = pnd.DataFrame(record_1, columns = ['Name_1', 'Age_1', 'Subjects_1', 'Percentage_1'])

print("Given DataFrame: \n", Data_Frame) 

# Then we will select rows based on condition, That is, Using loc[] method
result_DataFrame = Data_Frame.loc[Data_Frame['Percentage_1'] > 70]

print('\nFollowing is the Result DataFrame: \n', result_DataFrame)

输出:

Given DataFrame: 
    Name_1  Age_1   Subjects_1  Percentage_1
0    Anuj     23         DBMS            88
1    Ashu     24          ADS            62
2   Yashi     21         ASPM            85
3    Mark     19          BCM            71
4  Joshua     21         MFCS            55
5    John     24          ADS            78
6     Ray     25         ASPM            70
7   Lilly     22          TOC            66
8    Rose     23  Data Mining            71
9  Rachel     22         OOPS            89

Following is the Result DataFrame: 
    Name_1  Age_1   Subjects_1  Percentage_1
0    Anuj     23         DBMS            88
2   Yashi     21         ASPM            85
3    Mark     19          BCM            71
5    John     24          ADS            78
8    Rose     23  Data Mining            71
9  Rachel     22         OOPS            89

条件 3:

使用“ loc[] ”方法从数据帧中选择“百分比”不等于 71 的所有行。

代码:


# First, import pandas
import pandas as pnd
record_1 = {

 'Name_1': ['Anuj', 'Ashu', 'Yashi', 'Mark', 'Joshua', 'John', 'Ray', 'Lilly', 'Rose', 'Rachel' ],
 'Age_1': [23, 24, 21, 19, 21, 24, 25, 22, 23, 22],
 'Subjects_1': ['DBMS', 'ADS', 'ASPM', 'BCM', 'MFCS', 'ADS', 'ASPM', 'TOC', 'Data Mining', 'OOPS'],
 'Percentage_1': [88, 62, 85, 71, 55, 78, 70, 66, 71, 89] }

# Now, we are creating a dataframe
Data_Frame = pnd.DataFrame(record_1, columns = ['Name_1', 'Age_1', 'Subjects_1', 'Percentage_1'])

print("Given DataFrame: \n", Data_Frame) 

# Then we will select rows based on condition, That is, Using loc[] method
result_DataFrame = Data_Frame.loc[Data_Frame['Percentage_1'] != 71]

print('\nFollowing is the Result DataFrame: \n', result_DataFrame)

输出:

Given DataFrame: 
    Name_1  Age_1   Subjects_1  Percentage_1
0    Anuj     23         DBMS            88
1    Ashu     24          ADS            62
2   Yashi     21         ASPM            85
3    Mark     19          BCM            71
4  Joshua     21         MFCS            55
5    John     24          ADS            78
6     Ray     25         ASPM            70
7   Lilly     22          TOC            66
8    Rose     23  Data Mining            71
9  Rachel     22         OOPS            89

Following is the Result DataFrame: 
    Name_1  Age_1 Subjects_1  Percentage_1
0    Anuj     23       DBMS            88
1    Ashu     24        ADS            62
2   Yashi     21       ASPM            85
4  Joshua     21       MFCS            55
5    John     24        ADS            78
6     Ray     25       ASPM            70
7   Lilly     22        TOC            66
9  Rachel     22       OOPS            89

现在,我们将学习如何使用 DataFrame 的“isin()”函数来选择那些列值出现在列表中的行。

条件 4:

使用基本方法,选择给定数据帧中“科目 _1 ”列值出现在“科目 _2 列表中的所有行。

代码:


# First, import pandas
import pandas as pnd
record_1 = {

 'Name_1': ['Anuj', 'Ashu', 'Yashi', 'Mark', 'Joshua', 'John', 'Ray', 'Lilly', 'Rose', 'Rachel' ],
 'Age_1': [23, 24, 21, 19, 21, 24, 25, 22, 23, 22],
 'Subjects_1': ['DBMS', 'ADS', 'ASPM', 'BCM', 'MFCS', 'ADS', 'ASPM', 'TOC', 'Data Mining', 'OOPS'],
 'Percentage_1': [88, 62, 85, 71, 55, 78, 70, 66, 71, 89] }

# Now, we are creating a dataframe
Data_Frame = pnd.DataFrame(record_1, columns = ['Name_1', 'Age_1', 'Subjects_1', 'Percentage_1'])

print("Given DataFrame: \n", Data_Frame) 

Subjects_2 = ['ASPM', 'ADS', 'TOC']

# Then we will select rows based on condition, That is, Using isin[] method
result_DataFrame = Data_Frame[Data_Frame['Subjects_1'].isin(Subjects_2)]

print('\nFollowing is the Result DataFrame: \n', result_DataFrame)

输出:

Given DataFrame: 
    Name_1  Age_1   Subjects_1  Percentage_1
0    Anuj     23         DBMS            88
1    Ashu     24          ADS            62
2   Yashi     21         ASPM            85
3    Mark     19          BCM            71
4  Joshua     21         MFCS            55
5    John     24          ADS            78
6     Ray     25         ASPM            70
7   Lilly     22          TOC            66
8    Rose     23  Data Mining            71
9  Rachel     22         OOPS            89

Following is the Result DataFrame: 
   Name_1  Age_1 Subjects_1  Percentage_1
1   Ashu     24        ADS            62
2  Yashi     21       ASPM            85
5   John     24        ADS            78
6    Ray     25       ASPM            70
7  Lilly     22        TOC            66

条件 5:

使用“ loc[] ”方法选择给定数据帧中“主题 _1 ”列值出现在“主题 _2 ”列表中的所有行。

代码:


# First, import pandas
import pandas as pnd
record_1 = {

 'Name_1': ['Anuj', 'Ashu', 'Yashi', 'Mark', 'Joshua', 'John', 'Ray', 'Lilly', 'Rose', 'Rachel' ],
 'Age_1': [23, 24, 21, 19, 21, 24, 25, 22, 23, 22],
 'Subjects_1': ['DBMS', 'ADS', 'ASPM', 'BCM', 'MFCS', 'ADS', 'ASPM', 'TOC', 'Data Mining', 'OOPS'],
 'Percentage_1': [88, 62, 85, 71, 55, 78, 70, 66, 71, 89] }

# Now, we are creating a dataframe
Data_Frame = pnd.DataFrame(record_1, columns = ['Name_1', 'Age_1', 'Subjects_1', 'Percentage_1'])

print("Given DataFrame: \n", Data_Frame) 

Subjects_2 = ['ASPM', 'ADS', 'TOC']

# Then we will select rows based on condition, That is, Using isin[] method
result_DataFrame = Data_Frame.loc[Data_Frame['Subjects_1'].isin(Subjects_2)]

print('\nFollowing is the Result DataFrame: \n', result_DataFrame)

输出:

Given DataFrame: 
    Name_1  Age_1   Subjects_1  Percentage_1
0    Anuj     23         DBMS            88
1    Ashu     24          ADS            62
2   Yashi     21         ASPM            85
3    Mark     19          BCM            71
4  Joshua     21         MFCS            55
5    John     24          ADS            78
6     Ray     25         ASPM            70
7   Lilly     22          TOC            66
8    Rose     23  Data Mining            71
9  Rachel     22         OOPS            89

Following is the Result DataFrame: 
   Name_1  Age_1 Subjects_1  Percentage_1
1   Ashu     24        ADS            62
2  Yashi     21       ASPM            85
5   John     24        ADS            78
6    Ray     25       ASPM            70
7  Lilly     22        TOC            66

条件 6:

使用“ loc[] ”方法选择给定数据帧中“主题 _1 ”列值不在“主题 _2 ”列表中的所有行。

代码:


# First, import pandas
import pandas as pnd
record_1 = {

 'Name_1': ['Anuj', 'Ashu', 'Yashi', 'Mark', 'Joshua', 'John', 'Ray', 'Lilly', 'Rose', 'Rachel' ],
 'Age_1': [23, 24, 21, 19, 21, 24, 25, 22, 23, 22],
 'Subjects_1': ['DBMS', 'ADS', 'ASPM', 'BCM', 'MFCS', 'ADS', 'ASPM', 'TOC', 'Data Mining', 'OOPS'],
 'Percentage_1': [88, 62, 85, 71, 55, 78, 70, 66, 71, 89] }

# Now, we are creating a dataframe
Data_Frame = pnd.DataFrame(record_1, columns = ['Name_1', 'Age_1', 'Subjects_1', 'Percentage_1'])

print("Given DataFrame: \n", Data_Frame) 

Subjects_2 = ['ASPM', 'ADS', 'TOC']

# Then we will select rows based on condition, That is, Using isin[] method
result_DataFrame = Data_Frame.loc[~Data_Frame['Subjects_1'].isin(Subjects_2)]

print('\nFollowing is the Result DataFrame: \n', result_DataFrame)

输出:

Given DataFrame: 
    Name_1  Age_1   Subjects_1  Percentage_1
0    Anuj     23         DBMS            88
1    Ashu     24          ADS            62
2   Yashi     21         ASPM            85
3    Mark     19          BCM            71
4  Joshua     21         MFCS            55
5    John     24          ADS            78
6     Ray     25         ASPM            70
7   Lilly     22          TOC            66
8    Rose     23  Data Mining            71
9  Rachel     22         OOPS            89

Following is the Result DataFrame: 
    Name_1  Age_1   Subjects_1  Percentage_1
0    Anuj     23         DBMS            88
3    Mark     19          BCM            71
4  Joshua     21         MFCS            55
8    Rose     23  Data Mining            71
9  Rachel     22         OOPS            89

现在,我们将学习如何使用“&”运算符基于多列条件选择行。

条件 7:

使用基本方法,从给定数据帧中选择“百分比 _1 ”等于“ 71 ”且“主题 _1 ”出现在“主题 _2 列表中的所有行。

代码:


# First, import pandas
import pandas as pnd
record_1 = {

 'Name_1': ['Anuj', 'Ashu', 'Yashi', 'Mark', 'Joshua', 'John', 'Ray', 'Lilly', 'Rose', 'Rachel' ],
 'Age_1': [23, 21, 21, 19, 21, 24, 25, 22, 23, 22],
 'Subjects_1': ['DBMS', 'ADS', 'ASPM', 'BCM', 'MFCS', 'ADS', 'ASPM', 'TOC', 'Data Mining', 'OOPS'],
 'Percentage_1': [88, 71, 71, 82, 55, 78, 70, 66, 71, 89] }

# Now, we are creating a dataframe
Data_Frame = pnd.DataFrame(record_1, columns = ['Name_1', 'Age_1', 'Subjects_1', 'Percentage_1'])

print("Given DataFrame: \n", Data_Frame) 

Subjects_2 = ['ASPM', 'ADS', 'TOC']

# Then we will select rows based on condition, That is, Using isin[] method
result_DataFrame = Data_Frame[(Data_Frame['Percentage_1'] == 71) &
                              Data_Frame['Subjects_1'].isin(Subjects_2)]

print('\nFollowing is the Result DataFrame: \n', result_DataFrame)

输出:

Given DataFrame: 
    Name_1  Age_1   Subjects_1  Percentage_1
0    Anuj     23         DBMS            88
1    Ashu     21          ADS            71
2   Yashi     21         ASPM            71
3    Mark     19          BCM            82
4  Joshua     21         MFCS            55
5    John     24          ADS            78
6     Ray     25         ASPM            70
7   Lilly     22          TOC            66
8    Rose     23  Data Mining            71
9  Rachel     22         OOPS            89

Following is the Result DataFrame: 
   Name_1  Age_1 Subjects_1  Percentage_1
1   Ashu     21        ADS            71
2  Yashi     21       ASPM            71

条件 8:

使用“loc【】”方法选择给定数据帧中“百分比 _1”等于“ 71 ”且“主题 _1 ”出现在“主题 _2 ”列表中的所有行。

代码:


# First, import pandas
import pandas as pnd
record_1 = {

 'Name_1': ['Anuj', 'Ashu', 'Yashi', 'Mark', 'Joshua', 'John', 'Ray', 'Lilly', 'Rose', 'Rachel' ],
 'Age_1': [23, 21, 21, 19, 21, 24, 25, 22, 23, 22],
 'Subjects_1': ['DBMS', 'ADS', 'ASPM', 'BCM', 'MFCS', 'ADS', 'ASPM', 'TOC', 'Data Mining', 'OOPS'],
 'Percentage_1': [88, 71, 71, 82, 55, 78, 70, 66, 71, 89] }

# Now, we are creating a dataframe
Data_Frame = pnd.DataFrame(record_1, columns = ['Name_1', 'Age_1', 'Subjects_1', 'Percentage_1'])

print("Given DataFrame: \n", Data_Frame) 

Subjects_2 = ['ASPM', 'ADS', 'TOC']

# Then we will select rows based on condition, That is, Using isin[] method
result_DataFrame = Data_Frame.loc[(Data_Frame['Percentage_1'] == 71) &
                              Data_Frame['Subjects_1'].isin(Subjects_2)]

print('\nFollowing is the Result DataFrame: \n', result_DataFrame)

输出:

Given DataFrame: 
    Name_1  Age_1   Subjects_1  Percentage_1
0    Anuj     23         DBMS            88
1    Ashu     21          ADS            71
2   Yashi     21         ASPM            71
3    Mark     19          BCM            82
4  Joshua     21         MFCS            55
5    John     24          ADS            78
6     Ray     25         ASPM            70
7   Lilly     22          TOC            66
8    Rose     23  Data Mining            71
9  Rachel     22         OOPS            89

Following is the Result DataFrame: 
   Name_1  Age_1 Subjects_1  Percentage_1
1   Ashu     21        ADS            71
2  Yashi     21       ASPM            71

结论

在本教程中,我们讨论了如何根据各种条件选择 Pandas 数据帧的不同行。


原创文章,作者:小蓝,如若转载,请注明出处:https://www.506064.com/n/291168.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
小蓝小蓝
上一篇 2024-12-24 13:14
下一篇 2024-12-24 13:14

相关推荐

  • Python读取CSV数据画散点图

    本文将从以下方面详细阐述Python读取CSV文件并画出散点图的方法: 一、CSV文件介绍 CSV(Comma-Separated Values)即逗号分隔值,是一种存储表格数据的…

    编程 2025-04-29
  • Python中读入csv文件数据的方法用法介绍

    csv是一种常见的数据格式,通常用于存储小型数据集。Python作为一种广泛流行的编程语言,内置了许多操作csv文件的库。本文将从多个方面详细介绍Python读入csv文件的方法。…

    编程 2025-04-29
  • 如何用Python统计列表中各数据的方差和标准差

    本文将从多个方面阐述如何使用Python统计列表中各数据的方差和标准差, 并给出详细的代码示例。 一、什么是方差和标准差 方差是衡量数据变异程度的统计指标,它是每个数据值和该数据值…

    编程 2025-04-29
  • Python多线程读取数据

    本文将详细介绍多线程读取数据在Python中的实现方法以及相关知识点。 一、线程和多线程 线程是操作系统调度的最小单位。单线程程序只有一个线程,按照程序从上到下的顺序逐行执行。而多…

    编程 2025-04-29
  • Python两张表数据匹配

    本篇文章将详细阐述如何使用Python将两张表格中的数据匹配。以下是具体的解决方法。 一、数据匹配的概念 在生活和工作中,我们常常需要对多组数据进行比对和匹配。在数据量较小的情况下…

    编程 2025-04-29
  • Python爬取公交数据

    本文将从以下几个方面详细阐述python爬取公交数据的方法: 一、准备工作 1、安装相关库 import requests from bs4 import BeautifulSou…

    编程 2025-04-29
  • Python数据标准差标准化

    本文将为大家详细讲述Python中的数据标准差标准化,以及涉及到的相关知识。 一、什么是数据标准差标准化 数据标准差标准化是数据处理中的一种方法,通过对数据进行标准差标准化可以将不…

    编程 2025-04-29
  • 如何使用Python读取CSV数据

    在数据分析、数据挖掘和机器学习等领域,CSV文件是一种非常常见的文件格式。Python作为一种广泛使用的编程语言,也提供了方便易用的CSV读取库。本文将介绍如何使用Python读取…

    编程 2025-04-29
  • Python如何打乱数据集

    本文将从多个方面详细阐述Python打乱数据集的方法。 一、shuffle函数原理 shuffle函数是Python中的一个内置函数,主要作用是将一个可迭代对象的元素随机排序。 在…

    编程 2025-04-29
  • Python根据表格数据生成折线图

    本文将介绍如何使用Python根据表格数据生成折线图。折线图是一种常见的数据可视化图表形式,可以用来展示数据的趋势和变化。Python是一种流行的编程语言,其强大的数据分析和可视化…

    编程 2025-04-29

发表回复

登录后才能评论