本文目录一览:
学Python怎么样,前景怎么样?
Python前景是非常客观的。互联网产业的迅速发展带来了大量的工作机会,在这些年中,技术类公司占据了主导地位,而在云计算、大数据、人工智能等领域。根据未来的发展趋势,Python将会成为适用最广的语言。
应用广泛:Python的应用范围越来越广,包括后端开发、前端开发、财务量化分析、人工智能、自动化运营、自动化运营、大数据运营等。Python拥有功能丰富的库。这种语言经常被称为“胶水语言”,它可以很容易地将用其他语言制作的各种模块(特别是C/C++)连接起来。因此,Python开发效率比C、C++和Java等高出好几倍。需求大:当前市场的需求是百万级,而全球人工智能领域的人才大约有30万人。现在中国相关领域的人才储备比美国要低,所以学习AI是最好的时机符合未来发展趋势:机器学习和人工智能是当下最热的话题,Python 在人工智能领域内的机器学习、神经网络、深度学习等方面,都是主流的编程语言。千锋教育拥有多年Python培训服务经验,采用全程面授高品质、高体验培养模式,拥有国内一体化教学管理及学员服务,助力更多学员实现高薪梦想。
Python有哪些技术上的优点?比其他语言好在哪儿
Python有这些优点:1.简单性:Python是一种代表简单性思想的语言;2.易于使用:Python易于使用,因为有简单易懂的文档;3.快速:运行速度很快;4.免费开源。
1、简单性:Python是一种代表简单性思想的语言。
2、易于使用:Python易于使用,因为有简单易懂的文档。
3、快速:运行速度很快,因为Python中的标准库和第三方库都是用C语言编写的,所以速度非常快。
4、免费开源:Python是floss(免费/源代码软件)的一种。用户可以自由发布该软件的副本,阅读其源代码,对其进行更改,并在新的自由软件中使用其中的一部分。
5、高级语言:在Python中编写程序时,不需要考虑低级细节,例如如何管理程序使用的内存。
6、可移植性:由于其开源性质,python已经在许多平台上进行了移植(它已经被更改为在不同的平台上工作)。
7、说明:用Python编写的程序不需要编译成二进制代码。您可以直接从源代码运行该程序。在计算机内部,Python解释器将源代码转换为称为字节码的中间形式,然后将其转换为计算机使用的机器语言并运行。这使得python的使用更加容易。它还使Python程序更容易迁移。
8、面向对象:Python支持面向过程和面向对象编程。在“面向过程”的语言中,程序是从过程或简单的可重用代码的函数构建的。在“面向对象”语言中,程序是由数据和函数组成的对象构建的。
9、可伸缩性:如果您需要一段关键代码来运行得更快,或者希望一些算法不被公开,那么您可以用C或C++编写一些程序,然后在Python程序中使用它们。
10、可嵌入性:Python可以嵌入到C/C++程序中,为程序用户提供脚本函数。
11、丰富的库:python标准库非常庞大。它可以帮助处理各种任务,包括正则表达式、文档生成、单元测试、线程、数据库、web浏览器、CGI、FTP、电子邮件、XML、XML-RPC、HTML、WAV文件、密码系统、GUI(图形用户界面)、TK和其他与系统相关的操作。
12、标准代码:Python使用强制缩进使代码可读。用Python编写的程序不需要编译成二进制代码。
Python中冷门但非常好用的内置函数
Python中有许多内置函数,不像print、len那么广为人知,但它们的功能却异常强大,用好了可以大大提高代码效率,同时提升代码的简洁度,增强可阅读性
Counter
collections在python官方文档中的解释是High-performance container datatypes,直接的中文翻译解释高性能容量数据类型。这个模块实现了特定目标的容器,以提供Python标准内建容器 dict , list , set , 和 tuple 的替代选择。在python3.10.1中它总共包含以下几种数据类型:
容器名简介
namedtuple() 创建命名元组子类的工厂函数
deque 类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop)
ChainMap 类似字典(dict)的容器类,将多个映射集合到一个视图里面
Counter 字典的子类,提供了可哈希对象的计数功能
OrderedDict 字典的子类,保存了他们被添加的顺序
defaultdict 字典的子类,提供了一个工厂函数,为字典查询提供一个默认值
UserDict 封装了字典对象,简化了字典子类化
UserList 封装了列表对象,简化了列表子类化
UserString 封装了字符串对象,简化了字符串子类化
其中Counter中文意思是计数器,也就是我们常用于统计的一种数据类型,在使用Counter之后可以让我们的代码更加简单易读。Counter类继承dict类,所以它能使用dict类里面的方法
举例
#统计词频
fruits = [‘apple’, ‘peach’, ‘apple’, ‘lemon’, ‘peach’, ‘peach’]
result = {}
for fruit in fruits:
if not result.get(fruit):
result[fruit] = 1
else:
result[fruit] += 1
print(result)
#{‘apple’: 2, ‘peach’: 3, ‘lemon’: 1}下面我们看用Counter怎么实现:
from collections import Counter
fruits = [‘apple’, ‘peach’, ‘apple’, ‘lemon’, ‘peach’, ‘peach’]
c = Counter(fruits)
print(dict(c))
#{‘apple’: 2, ‘peach’: 3, ‘lemon’: 1}显然代码更加简单了,也更容易阅读和维护了。
elements()
返回一个迭代器,其中每个元素将重复出现计数值所指定次。元素会按首次出现的顺序返回。如果一个元素的计数值小于1,elements()将会忽略它。
c = Counter(a=4, b=2, c=0, d=-2)
sorted(c.elements())
[‘a’, ‘a’, ‘a’, ‘a’, ‘b’, ‘b’]most_common([n])
返回一个列表,其中包含n个最常见的元素及出现次数,按常见程度由高到低排序。如果n被省略或为None,most_common()将返回计数器中的所有元素。计数值相等的元素按首次出现的顺序排序:
Counter(‘abracadabra’).most_common(3)
[(‘a’, 5), (‘b’, 2), (‘r’, 2)]这两个方法是Counter中最常用的方法,其他方法可以参考 python3.10.1官方文档
实战
Leetcode 1002.查找共用字符
给你一个字符串数组words,请你找出所有在words的每个字符串中都出现的共用字符(包括重复字符),并以数组形式返回。你可以按任意顺序返回答案。
输入:words = [“bella”, “label”, “roller”]
输出:[“e”, “l”, “l”]
输入:words = [“cool”, “lock”, “cook”]
输出:[“c”, “o”]看到统计字符,典型的可以用Counter完美解决。这道题是找出字符串列表里面每个元素都包含的字符,首先可以用Counter计算出每个元素每个字符出现的次数,依次取交集最后得出所有元素共同存在的字符,然后利用elements输出共用字符出现的次数
class Solution:
def commonChars(self, words: List[str]) – List[str]:
from collections import Counter
ans = Counter(words[0])
for i in words[1:]:
ans = Counter(i)
return list(ans.elements())提交一下,发现83个测试用例耗时48ms,速度还是不错的
sorted
在处理数据过程中,我们经常会用到排序操作,比如将列表、字典、元组里面的元素正/倒排序。这时候就需要用到sorted(),它可以对任何可迭代对象进行排序,并返回列表
对列表升序操作:
a = sorted([2, 4, 3, 7, 1, 9])
print(a)
# 输出:[1, 2, 3, 4, 7, 9]对元组倒序操作:
sorted((4,1,9,6),reverse=True)
print(a)
# 输出:[9, 6, 4, 1]使用参数:key,根据自定义规则,按字符串长度来排序:
fruits = [‘apple’, ‘watermelon’, ‘pear’, ‘banana’]
a = sorted(fruits, key = lambda x : len(x))
print(a)
# 输出:[‘pear’, ‘apple’, ‘banana’, ‘watermelon’]all
all() 函数用于判断给定的可迭代参数iterable中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False。元素除了是 0、空、None、False外都算True。注意:空元组、空列表返回值为True。
all([‘a’, ‘b’, ‘c’, ‘d’]) # 列表list,元素都不为空或0
True
all([‘a’, ‘b’, ”, ‘d’]) # 列表list,存在一个为空的元素
False
all([0, 1,2, 3]) # 列表list,存在一个为0的元素
False
all((‘a’, ‘b’, ‘c’, ‘d’)) # 元组tuple,元素都不为空或0
True
all((‘a’, ‘b’, ”, ‘d’)) # 元组tuple,存在一个为空的元素
False
all((0, 1, 2, 3)) # 元组tuple,存在一个为0的元素
False
all([]) # 空列表
True
all(()) # 空元组
Trueany函数正好和all函数相反:判断一个tuple或者list是否全为空,0,False。如果全为空,0,False,则返回False;如果不全为空,则返回True。
F-strings
在python3.6.2版本中,PEP 498提出一种新型字符串格式化机制,被称为 “字符串插值” 或者更常见的一种称呼是F-strings,F-strings提供了一种明确且方便的方式将python表达式嵌入到字符串中来进行格式化:
s1=’Hello’
s2=’World’
print(f'{s1} {s2}!’)
# Hello World!在F-strings中我们也可以执行函数:
def power(x):
return x*x
x=4
print(f'{x} * {x} = {power(x)}’)
# 4 * 4 = 16而且F-strings的运行速度很快,比传统的%-string和str.format()这两种格式化方法都快得多,书写起来也更加简单。
本文主要讲解了python几种冷门但好用的函数,更多内容以后会陆陆续续更新~
分享!5个好用的Python工具
1、 IDLE
IDLE直译过来就是集成开发与学习环境的意思,一般安装 Python 时也会默认安装 IDLE。每个语言都可以有自己的IDLE。它让Python的入门变得简单,对于没什么基础的人写就对了。它的主要功能包括Python shell 窗口(交互式解释器)、跨平台(Windows、Linux、UNIX、Mac OS X)、智能缩进、代码着色、自动提示、可以实现断点提示、单步执行等调试功能的基本集成调试器。
2、 Scikit-learn
scikit-learn是一个建立在Scipy基础上的用于机器学习的Python模块。其中scikit-learn是最有名的,是开源的,任何人都可以免费地使用这个库或者进行二次开发。它是一个非常强大的工具,能为库的开发提供高水平的支持和严格的管理。它也得到了很多第三方工具的支持,有丰富的功能适用于各种用例。
3、Theano
Theano是一个较老牌和稳定的机器学习python库之一,虽然目前使用的人数有所下降。但它毕竟是一个祖师级的存在,一定有它的优点所在。Theano基于Python擅长处理多维数组,属于比较底层的框架,theano起初也是为了深度学习中大规模人工神经网络算法的运算所设计,我们可利用符号化式语言定义想要的结果,支持GPU加速,非常适合深度学习Python。
4、Selenium
Selenium 是自动化的最佳工具之一。它属于 Python 测试的自动化。它在 Web 应用程序中用于自动化框架。支持多款主流浏览器,提供了功能丰富的API接口,常被用作爬虫工具。使用它可以用许多编程语言编写测试脚本,包括Java、C#、python、ruby等。还可以集成 Junit 和 TestNG 等铀工具来管理测试用例并生成报告。
5、Skulpt
Skulpt 是一个用 Javascript 实现的在线 Python 执行环境,完全依靠浏览器端模拟实现Python运行的工具。不需要任何预处理、插件或服务器端支持,只需编写python并重新载入即可。因为代码完全是在浏览器中运行的,所以不用担心服务器崩溃的问题。
关于分享!5个好用的Python工具,环球青藤小编就和大家分享到这里了,学习是永无止境的,学习一项技能更是受益终身,所以,只要肯努力学,什么时候开始都不晚。如果您还想继续了解关于python编程的学习方法及素材等内容,可以点击本站其他文章学习。
原创文章,作者:小蓝,如若转载,请注明出处:https://www.506064.com/n/271121.html