如何使用 Python Load 实现高效数据加载

1、介绍

随着数据获取的方式越来越多元,数据处理和分析的需求也随之增加。在这个领域,Python 作为一种通用编程语言,成为了处理和分析数据的重要工具, 也因为其简单、灵活、易读以及强大的第三方库支持而越来越流行。

然而,当我们面对更大规模和更复杂类型的数据时,我们需要更快速、更可靠的方式来处理和加载数据。Python 的一些包,例如 CSV 和 Pandas , 或者 Pandas 和 Dask , 能够处理可读的数据文件,但当处理超大数据文件时,这些库就不能够胜任任务了。因此,现在已经有了一些用于像 HDF5 和 Apache Parquet 这样的文件格式,提供了更快,更高效的解决方案。

2、正文

1、特点介绍

处理大数据的一个核心问题是如何在内存中容纳大量的信息。较高的加载速度也是一个重要的要求。 这时候 HDF5 和 Apache Parquet 文件格式就表现出了其独特的优势。

HDF5是Hierarchical Data Format的简称。它是一种数据存储格式,适用于将各种大数据类型和数据集组合成一个统一的文件。由于它是基于B树的,因此可以快速搜索和读取,支持时间戳和其他任意元数据等。它可以存储任意类型的数据,因此在处理大规模科学数据和实验数据时非常有用。

Apache Parquet 文件格式是一种适用于Hadoop的列式存储文件格式,它在处理大型列式数据时非常有用。在处理此类数据时,仅对需要的列进行检索,而不是像传统行式数据文件那样读取整个数据行。在大多数情况下,这会显着减少搜索/查询所需的磁盘 I / O 操作。此外,它还支持针对不同列应用不同的压缩和编码,以进一步提高速度和效率。

2、HDF5的使用

Python 可以使用 PyTables 和 h5py 库来读写 HDF5 文件。以下是使用 h5py 库读取和存储数据的基本示例:

import h5py
import numpy as np

#创建新文件
with h5py.File('my_file.hdf5', 'w') as f:
    #创建数据集并添加数据
    data = np.random.rand(10, 10)
    f.create_dataset('my_dataset', data=data)

#打开文件并查看数据
with h5py.File('my_file.hdf5', 'r') as f:
    #打印出 my_dataset 数据集
    print(list(f.keys()))
    a_group_key = list(f.keys())[0]
    #获取 my_dataset 数据集中的数据并打印出结果
    data = list(f[a_group_key])
    print(data)

3、Apache Parquet的使用

与 HDF5 类似,Python 也可以使用不同的库来读写 Apache Parquet 文件。 Pyarrow 和 Fastparquet 是两个常用的库。下面是一个使用 Pyarrow 库读取和存储数据的基本示例:

import pyarrow as pa
import pandas as pd

#创建 Pandas DataFrame
df = pd.DataFrame({
    'my_integers': [1, 2, 3, 4],
    'my_floats': [0.1, 0.2, 0.3, 0.4],
    'my_strings': ['foo', 'bar', 'baz', 'qux']
})

#将 Pandas DataFrame 转换为 Pyarrow 表
table = pa.Table.from_pandas(df)

#将 Pyarrow 表写入 Parquet 文件
with pa.OSFile('my_file.parquet', 'wb') as f:
    with pa.RecordBatchFileWriter(f, table.schema) as writer:
        writer.write_table(table)

#从 Parquet 文件中读取数据
with pa.OSFile('my_file.parquet', 'rb') as f:
    reader = pa.RecordBatchFileReader(f)
    table_from_file = reader.read_all()

#将 Pyarrow 表转换为 Pandas DataFrame
df_from_table = table_from_file.to_pandas()

print(df_from_table)

4、比较

虽然 HDF5 和 Apache Parquet 都是用于存储大型数据文件的优秀解决方案,但它们还是有一些本质区别的:

  • 随机访问:由于 HDF5 文件格式是一种基于 B 树的格式,因此可以相对快速地实现随机访问。而 Apache Parquet,一般是在 Hadoop 集群上使用,并针对具有大量数据的列执行大量扫描计算。这不需要随机访问,而是仅需要检索数据的一个或几个列。
  • 数据类型:HDF5 可以存储任意类型的数据。这使其非常适合处理从各种传感器和仪器中收集的实验和科学数据。然而,在通过 Python,Java 等高级语言从 Hadoop 环境中读取数据时,通常更喜欢把数据结构化和类型化,而 Apache Parquet 成为了最流行的解决方案。
  • 支持的系统: HDF5 的 API 在许多系统和语言中都提供了广泛的支持,而 Apache Parquet,尽管它是一种用于大规模数据分析的流行格式,但支持的语言和 API 类型相对较少。

3、小结

Python 能够迅速地读取和处理大量复杂的数据,当然,对于超大规模和复杂度的数据,还需要超出传统方法来处理大规模的数据。HDF5 和 Apache Parquet 文件格式,分别提供了更高效、更快速的方式,使得 Python 能够更方便处理大规模的数据,同时在大型数据存储和任务处理方面成为其重要的辅助工具。

原创文章,作者:小蓝,如若转载,请注明出处:https://www.506064.com/n/195777.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
小蓝小蓝
上一篇 2024-12-02 20:36
下一篇 2024-12-02 20:36

相关推荐

  • Python读取CSV数据画散点图

    本文将从以下方面详细阐述Python读取CSV文件并画出散点图的方法: 一、CSV文件介绍 CSV(Comma-Separated Values)即逗号分隔值,是一种存储表格数据的…

    编程 2025-04-29
  • Java Bean加载过程

    Java Bean加载过程涉及到类加载器、反射机制和Java虚拟机的执行过程。在本文中,将从这三个方面详细阐述Java Bean加载的过程。 一、类加载器 类加载器是Java虚拟机…

    编程 2025-04-29
  • QML 动态加载实践

    探讨 QML 框架下动态加载实现的方法和技巧。 一、实现动态加载的方法 QML 支持从 JavaScript 中动态指定需要加载的 QML 组件,并放置到运行时指定的位置。这种技术…

    编程 2025-04-29
  • 如何使用Python获取某一行

    您可能经常会遇到需要处理文本文件数据的情况,在这种情况下,我们需要从文本文件中获取特定一行的数据并对其进行处理。Python提供了许多方法来读取和处理文本文件中的数据,而在本文中,…

    编程 2025-04-29
  • Python中读入csv文件数据的方法用法介绍

    csv是一种常见的数据格式,通常用于存储小型数据集。Python作为一种广泛流行的编程语言,内置了许多操作csv文件的库。本文将从多个方面详细介绍Python读入csv文件的方法。…

    编程 2025-04-29
  • 如何用Python统计列表中各数据的方差和标准差

    本文将从多个方面阐述如何使用Python统计列表中各数据的方差和标准差, 并给出详细的代码示例。 一、什么是方差和标准差 方差是衡量数据变异程度的统计指标,它是每个数据值和该数据值…

    编程 2025-04-29
  • 如何使用jumpserver调用远程桌面

    本文将介绍如何使用jumpserver实现远程桌面功能 一、安装jumpserver 首先我们需要安装并配置jumpserver。 $ wget -O /etc/yum.repos…

    编程 2025-04-29
  • Python多线程读取数据

    本文将详细介绍多线程读取数据在Python中的实现方法以及相关知识点。 一、线程和多线程 线程是操作系统调度的最小单位。单线程程序只有一个线程,按照程序从上到下的顺序逐行执行。而多…

    编程 2025-04-29
  • Python两张表数据匹配

    本篇文章将详细阐述如何使用Python将两张表格中的数据匹配。以下是具体的解决方法。 一、数据匹配的概念 在生活和工作中,我们常常需要对多组数据进行比对和匹配。在数据量较小的情况下…

    编程 2025-04-29
  • Python爬取公交数据

    本文将从以下几个方面详细阐述python爬取公交数据的方法: 一、准备工作 1、安装相关库 import requests from bs4 import BeautifulSou…

    编程 2025-04-29

发表回复

登录后才能评论