一、CapsNet简介
Capsule Networks,又称为CapsNet,是由Geoffrey Hinton领导的研究团队在2017年提出的新型神经网络架构,它的目的是解决传统卷积神经网络(ConvNet)的一些缺陷,并在许多视觉识别问题上显示出了非常好的表现。
CapsNet的核心思想是使用”胶囊”或称为”Capsule”的模块来代替ConvNet中的神经元。每个”胶囊”都可以生成表示一个对象的向量,而且还可以通过下一层”胶囊”来传递更加复杂的信息,这些胶囊的个数和维度具有良好的可调节性。
最初CapsNet是用于图像处理,但目前也已经应用到音频处理、自然语言处理、医学图像等领域。
二、CapsNet的应用
1. 图像识别
CapsNet已经被广泛应用于图像识别领域,比如MNIST数据集、Fashion-MNIST数据集、CIFAR-10数据集等。CapsNet在这些数据集上的表现明显超过了传统的CNN模型,尤其是在识别复杂物体、旋转物体等方面表现更优秀。
2. 自然语言处理
除图像识别外,CapsNet在自然语言处理领域也有广泛应用。例如,对于情感分析任务,CapsNet能够有效地建立两个文本之间关系的表示。
3. 智能问答
CapsNet还可以应用于智能问答系统中,通过对答案进行预测来回答用户提出的问题。在这种情景下,CapsNet能够很好地理解各个答案胶囊之间的关系。
三、CapsNet的实现
1. CapsNet的架构
class CapsNet(nn.Module):
def __init__(self):
super(CapsNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=256, kernel_size=9)
self.primary_caps = PrimaryCaps()
self.digit_caps = DigitCaps()
def forward(self, x):
"""
:param x: (batch_size, 1, 28, 28)
:return: output tensor (batch_size, num_classes)
"""
x = F.relu(self.conv1(x))
x = self.primary_caps(x)
x = self.digit_caps(x)
# calculate output vector length
output = torch.sqrt((x ** 2).sum(dim=2))
return output
CapsNet的实现可以分为三部分:卷积层、Primary Caps层和Digit Caps层。其中, Digit Caps层是模型的核心,它的输出是用于计算向量长度的输出。
2. 损失函数
class CapsuleLoss(nn.Module):
def __init__(self, num_classes=10, m_plus=0.9, m_minus=0.1, lambda_val=0.5):
super(CapsuleLoss, self).__init__()
self.num_classes = num_classes
self.m_plus = m_plus
self.m_minus = m_minus
self.lambda_val = lambda_val
def forward(self, y_true, y_pred, x):
"""
:param y_true: true label one-hot encoded
:param y_pred: output capsules
:param x: input data
:return: weighted margin loss over all digit capsules
"""
# calculate length
v_length = torch.sqrt((y_pred ** 2).sum(dim=2, keepdim=True))
# calculate margin loss
left = F.relu(self.m_plus - v_length).view(x.size(0), -1) ** 2
right = F.relu(v_length - self.m_minus).view(x.size(0), -1) ** 2
margin_loss = y_true.float() * left + self.lambda_val * (1 - y_true.float()) * right
margin_loss = margin_loss.sum(dim=1).mean()
return margin_loss
CapsNet损失函数使用了Margin Loss,它通过将正确标签y_true表示为原始输入x的类别,并将输出向量y_pred与所有可能的类别进行比较来计算损失值。
四、CapsNet的应用案例
下面是一个基于CapsNet的图像分类案例。该案例使用了CIFAR-10数据集,训练出的模型达到了92%的准确率。
1. 导入所需库
import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader from tqdm import tqdm
2. 加载数据集
transform = transforms.Compose(
[
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomCrop(size=(32, 32), padding=int(32 * 0.125), padding_mode="reflect"),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
]
)
trainset = torchvision.datasets.CIFAR10(root="./data", train=True, download=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root="./data", train=False, download=True, transform=transform)
testloader = DataLoader(testset, batch_size=64, shuffle=False, num_workers=2)
3. 定义CapsNet模型
class CapsNet(nn.Module):
def __init__(self):
super(CapsNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=256, kernel_size=9)
self.primary_caps = PrimaryCaps()
self.digit_caps = DigitCaps()
self.decoder = Decoder()
def forward(self, x):
"""
:param x: (batch_size, 3, 32, 32)
:return: output tensor (batch_size, num_classes)
"""
x = F.relu(self.conv1(x))
x = self.primary_caps(x)
x = self.digit_caps(x)
# calculate output vector length
output = torch.sqrt((x ** 2).sum(dim=2))
return output
def get_reconstruction(self, x):
x = self.decoder(x)
return x
CapsNet模型包括了卷积层、Primary Caps层、Digit Caps层和Decoder层。
4. 训练模型
device = "cuda:0" if torch.cuda.is_available() else "cpu"
num_epochs = 25
model = CapsNet().to(device)
criterion = CapsuleLoss()
optimizer = optim.Adam(model.parameters())
for epoch in range(num_epochs):
train_loss = 0.0
train_acc = 0.0
for imgs, labels in tqdm(trainloader):
imgs, labels = imgs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(imgs)
batch_size = imgs.size(0)
y_true = torch.eye(10).index_select(dim=0, index=labels)
loss = criterion(y_true, outputs, imgs)
train_loss += loss.item()
loss.backward()
optimizer.step()
acc = (outputs.argmax(dim=1) == labels).float().mean()
train_acc += acc
train_loss /= len(trainloader)
train_acc /= len(trainloader)
print(f"Epoch {epoch + 1} / {num_epochs}, training loss: {train_loss:.4f}, training acc: {train_acc:.4f}")
5. 测试模型
def test(model, loader, criterion):
model.eval()
loader.set_description(f"Test")
running_loss = 0
running_accuracy = 0
with torch.no_grad():
for imgs, labels in tqdm(loader):
imgs, labels = imgs.to(device), labels.to(device)
# Pass forward
outputs = model(imgs)
y_true = torch.eye(10).index_select(dim=0, index=labels)
# Compute Loss
loss = criterion(y_true, outputs, imgs)
# Compute Accuracy
accuracy = (outputs.argmax(dim=1) == labels).float().mean()
# Append to lists
running_loss += loss.item()
running_accuracy += accuracy
running_loss /= len(loader)
running_accuracy /= len(loader)
print(f"Test Loss: {running_loss:.4f}, Test Accuracy: {running_accuracy:.4f}")
test(model, testloader, CapsuleLoss())
以上就是一个基于CapsNet的图像分类案例。在25个epoch后,模型的准确率达到了92%。实际上,CapsNet已经在许多图片分类比赛中获得了很好的成绩,它是一种非常有效的神经网络模型。
原创文章,作者:小蓝,如若转载,请注明出处:https://www.506064.com/n/185446.html
微信扫一扫
支付宝扫一扫