一、概述
ResNet(残差神经网络)于 2015 年提出,是 ImageNet 图像分类任务上的冠军。其核心思想是通过引入跨层连接(shortcut connection)解决了深层神经网络训练过程中梯度消失和梯度爆炸的问题。ResNet18 是 ResNet 的一个较小版本,共有 18 层,包括 16 层卷积神经网络层和 2 层全连接层。
二、ResNet18 细节
1.卷积层
ResNet18 的卷积层共包含16层,在 3×3 的卷积核后,采用 ReLU 激活函数,步长为1,不使用池化层。其中,前7层卷积没有跨层连接,8-16 层使用了跨层连接。具体来说,8-16 层中每隔一个残差块就有一条跨层连接,用于将上一层特征图与下一层残差块的输出相加。
2.残差块
ResNet18 的每个残差块包含 2-3 个卷积层,每个卷积层都跟随着 Batch Normalization 层和 ReLU 激活函数。具体来说,第一个卷积层的卷积核大小为 3 × 3,第二个卷积层的卷积核大小也为 3 × 3。如果跨层连接存在,还需要添加一层 1 × 1 的卷积层用于调整维度。
3.全连接层
ResNet18 的最后两层全连接层都含有 512 个神经元,倒数第二层使用 ReLU 激活函数,而最后一层使用 Softmax 函数产生对类的预测输出。
三、代码示例
1.定义 ResNet18 结构
import torch.nn as nn class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = nn.functional.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = nn.functional.relu(out) return out class ResNet18(nn.Module): def __init__(self, num_classes=10): super(ResNet18, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(64, 2, stride=1) self.layer2 = self._make_layer(128, 2, stride=2) self.layer3 = self._make_layer(256, 2, stride=2) self.layer4 = self._make_layer(512, 2, stride=2) self.linear = nn.Linear(512*BasicBlock.expansion, num_classes) def _make_layer(self, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(BasicBlock(self.in_planes, planes, stride)) self.in_planes = planes * BasicBlock.expansion return nn.Sequential(*layers) def forward(self, x): out = nn.functional.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = nn.functional.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out
2.实例化 ResNet18 模型
resnet18 = ResNet18()
3.模型训练
criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(resnet18.parameters()) for epoch in range(num_epochs): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = resnet18(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 2000 == 1999: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0
原创文章,作者:QWYJ,如若转载,请注明出处:https://www.506064.com/n/135397.html