Python实现多项式回归,更精准预测数据

一、多项式回归简介

多项式回归是一种基于最小二乘法的回归分析方法,它是一种特殊的线性回归,通过构造一个特定的多项式模型,并通过求解最小二乘法来拟合样本的非线性关系,得到更精准的预测结果。

多项式回归在实际应用中广泛存在,例如:股票价格预测、房价预测等。下面将介绍如何使用Python实现多项式回归。

二、python实现多项式回归

1.导入必要的库:


import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline 

2.准备数据:


# 生成随机数据
np.random.seed(0)
x = np.linspace(0, 10, 100)
y = np.sin(x) + np.random.randn(100) / 5
plt.scatter(x, y);

这里我们使用numpy库生成了一些随机数据,然后使用matplotlib库将它们可视化。

3.进行多项式回归:


# 使用最高次数为5的多项式进行回归
p = np.polyfit(x, y, 5)
print(p)

这里我们使用np.polyfit()函数进行多项式回归,其中x和y是我们准备好的数据,5表示使用最高次数为5的多项式进行回归。运行以上代码可以输出拟合后的系数。在这个例子中,我们使用最高次数为5的多项式进行回归。如果你想要使用更高次数的多项式,只需要将5这个参数修改为相应的数值即可。

4.可视化多项式回归结果:


# 将多项式拟合曲线可视化
x_plot = np.linspace(0, 10, 100)
y_plot = np.polyval(p, x_plot)
plt.scatter(x, y)
plt.plot(x_plot, y_plot, color='r');

以上代码将多项式回归结果可视化,其中使用了np.polyval()函数,它可以帮助我们使用回归系数计算多项式拟合方程的值。最后使用plt.plot()函数将多项式拟合曲线可视化。

三、多项式回归应用案例

下面举个简单的例子,展示多项式回归在实际应用中的效果。

首先我们导入必要的库,然后使用make_regression()函数创建一个随机回归模型。


from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.datasets import make_regression

# 创建一个随机回归模型
X, y = make_regression(n_samples=100, n_features=1, noise=20, random_state=42)

# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

接下来,我们创建一个多项式特征转换器,并训练一个线性回归模型。


# 创建多项式特征转换器,并训练一个线性回归模型
poly = PolynomialFeatures(degree=2)
X_poly_train = poly.fit_transform(X_train)
X_poly_test = poly.transform(X_test)

lin_reg = LinearRegression()
lin_reg.fit(X_poly_train, y_train)

然后我们可以使用均方误差(MSE)来评价模型的性能。


# 评估模型性能
y_pred = lin_reg.predict(X_poly_test)
mse = mean_squared_error(y_test, y_pred)
print('MSE:', mse)

可视化多项式回归结果:


# 可视化多项式回归结果
X_plot = np.linspace(-3, 3, 100).reshape(-1, 1)
y_plot = lin_reg.predict(poly.transform(X_plot))

plt.scatter(X, y)
plt.plot(X_plot, y_plot, color='r');

四、总结

本文介绍了如何使用Python实现多项式回归,并通过简单的案例介绍了多项式回归在实际应用中的效果。对于了解多项式回归的读者,希望本文可以为你提供一些帮助。

原创文章,作者:IRVW,如若转载,请注明出处:https://www.506064.com/n/131433.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
IRVWIRVW
上一篇 2024-10-03 23:45
下一篇 2024-10-03 23:45

相关推荐

  • Python列表中负数的个数

    Python列表是一个有序的集合,可以存储多个不同类型的元素。而负数是指小于0的整数。在Python列表中,我们想要找到负数的个数,可以通过以下几个方面进行实现。 一、使用循环遍历…

    编程 2025-04-29
  • Python周杰伦代码用法介绍

    本文将从多个方面对Python周杰伦代码进行详细的阐述。 一、代码介绍 from urllib.request import urlopen from bs4 import Bea…

    编程 2025-04-29
  • 如何查看Anaconda中Python路径

    对Anaconda中Python路径即conda环境的查看进行详细的阐述。 一、使用命令行查看 1、在Windows系统中,可以使用命令提示符(cmd)或者Anaconda Pro…

    编程 2025-04-29
  • Python计算阳历日期对应周几

    本文介绍如何通过Python计算任意阳历日期对应周几。 一、获取日期 获取日期可以通过Python内置的模块datetime实现,示例代码如下: from datetime imp…

    编程 2025-04-29
  • Python中引入上一级目录中函数

    Python中经常需要调用其他文件夹中的模块或函数,其中一个常见的操作是引入上一级目录中的函数。在此,我们将从多个角度详细解释如何在Python中引入上一级目录的函数。 一、加入环…

    编程 2025-04-29
  • python强行终止程序快捷键

    本文将从多个方面对python强行终止程序快捷键进行详细阐述,并提供相应代码示例。 一、Ctrl+C快捷键 Ctrl+C快捷键是在终端中经常用来强行终止运行的程序。当你在终端中运行…

    编程 2025-04-29
  • Python程序需要编译才能执行

    Python 被广泛应用于数据分析、人工智能、科学计算等领域,它的灵活性和简单易学的性质使得越来越多的人喜欢使用 Python 进行编程。然而,在 Python 中程序执行的方式不…

    编程 2025-04-29
  • 蝴蝶优化算法Python版

    蝴蝶优化算法是一种基于仿生学的优化算法,模仿自然界中的蝴蝶进行搜索。它可以应用于多个领域的优化问题,包括数学优化、工程问题、机器学习等。本文将从多个方面对蝴蝶优化算法Python版…

    编程 2025-04-29
  • Python字典去重复工具

    使用Python语言编写字典去重复工具,可帮助用户快速去重复。 一、字典去重复工具的需求 在使用Python编写程序时,我们经常需要处理数据文件,其中包含了大量的重复数据。为了方便…

    编程 2025-04-29
  • Python清华镜像下载

    Python清华镜像是一个高质量的Python开发资源镜像站,提供了Python及其相关的开发工具、框架和文档的下载服务。本文将从以下几个方面对Python清华镜像下载进行详细的阐…

    编程 2025-04-29

发表回复

登录后才能评论