Python random.uniform()

在本教程中,我们将讨论 Python random模块中的 uniform()方法,以及如何通过导入 NumPy 来使用它。

uniform()返回一个浮点数或指定限制之间的数字范围。

使用 uniform()的语法是-


random.uniform(a,b)

这里,“a”代表上限,b 代表下限。

让我们看一些例子,展示它在 Python 程序中的用法。

下面的程序说明了如何在 python 程序中使用它


# Import the random module
import random
# Initialize the upper and lower limits
x = 8
y = 12
# Displaying the random number
print ("The random number between 8 and 12 is : ", end = " ")
#using random.uniform()
print(random.uniform(x,y))

输出:

The random number between 8 and 12 is:  10.14646142251812

解释-

让我们了解一下在上面的程序中发生了什么-

  1. 因为我们必须使用 uniform()方法,所以我们导入了random模块。
  2. 之后,我们初始化了上限和下限,分别是 8 和 12。
  3. 最后,我们将这两个值作为统一()中的参数传递。
  4. 执行该程序时,会显示预期的输出。

让我们看一看另一个程序,其中我们遵循了相同的方法,但提供了浮动值作为上限和下限。


# Import the random module
import random
# Initialize the upper and lower limits
x = 9.7
y = 14.3
# Displaying the random number
print("The random number between 9.7 and 14.3 is: ", end = " ")
#using random.uniform()
print(random.uniform(x,y))

输出:

The random number between 9.7 and 14.3 is :  11.521121715281813

解释-

该程序与之前的程序相同,但在这里我们可以观察到,即使我们提供十进制值,它也显示所需的输出。

我们都知道,NumPy 模块在 Python 中用于执行不同的数学运算,由于该模块提供的内置函数种类,我们的代码变得不那么复杂,效率更高。

让我们看看如何在这里使用 uniform()

考虑下面给出的程序,


# Importing the NumPy module
import numpy as np
np.random.seed(55)
# Creating an array of size four
num_arr = np.random.uniform(size = 4, low = 0, high = 1)
# Displaying the values of array
print("The resultant array is: ", num_arr)

输出:

The resultant array is:  [0.09310829 0.97165592 0.48385998 0.2425227 ]

解释-

是时候知道上面程序的解释了-

  1. 因为我们必须使用 uniform()方法,所以这次我们导入了 NumPy 模块。
  2. 下一步是在 random.seed()中提供一个值,因为它用于初始化随机数生成器。
  3. 之后,我们在 np.random.uniform()中初始化了数组大小的值,分别是 4,0 和 1 的上界和下界。
  4. 我们已经使用 np.random.uniform()声明了 num_arr,因为我们正在这里生成一个数组。
  5. 在执行这个程序时,会显示预期的输出,它是一个由三个值组成的数组。

现在,让我们看看另一个程序-


# Importing the numpy module
import numpy as np
np.random.seed(0)
# Creating an array of size four
num_arr = np.random.uniform(size = (3, 3), low = 0, high = 1)
#Displaying the values of array
print("The resultant array is: ", num_arr)
# Displaying the type of num_arr
print(type(num_arr))

输出:

The resultant array is:  [[0.5488135  0.71518937 0.60276338]
 [0.54488318 0.4236548  0.64589411]
 [0.43758721 0.891773   0.96366276]]
<class 'numpy.ndarray'>

解释-

让我们了解这里发生了什么,

  1. 因为我们必须使用 uniform()方法,所以这次我们导入了 NumPy 模块。
  2. 下一步是在 random.seed()中提供一个值,因为它用于初始化随机数生成器。
  3. 之后,我们初始化了数组的大小值(这次我们创建了一个二维数组),上限和下限分别是(3,3),0 和 1,在 np.random.uniform()中。
  4. 我们已经使用 np.random.uniform()声明了 num_arr,因为我们正在这里生成一个数组。
  5. 在执行这个程序时,会显示预期的输出,它是一个由三个值组成的数组,并且是 num_arr 类型。

最后,是时候讨论本文的最后一个节目了,


#Importing the numpy module
import numpy as np
np.random.seed(0)
#Creating an array of size five
num_arr=np.random.uniform(size = 5, low = 42, high = 63)
#Displaying the values of array
print("The resultant array is: ", num_arr)
#Displaying the type of num_arr
print(type(num_arr))

输出:

The resultant array is:  [53.52508358 57.01897669 54.6580309  53.44254684 50.89675079]
<class 'numpy.ndarray'>

解释-

  1. 因为我们必须使用 uniform()方法,所以这次我们导入了 NumPy 模块。
  2. 下一步是在 random.seed()中提供一个值,因为它用于初始化随机数生成器。
  3. 之后,我们初始化了 np.random.uniform()中数组大小的值,上界和下界分别为 5,42 和 63(这次我们取了一个确定的范围)。
  4. 我们已经使用 np.random.uniform()声明了 num_arr,因为我们正在这里生成一个数组。
  5. 在执行这个程序时,会显示预期的输出,它是一个由三个值组成的数组,并且是 num_arr 类型。

在本教程中,我们学习了什么是 uniform()以及如何在各种 python 程序中使用它。


原创文章,作者:AK801,如若转载,请注明出处:https://www.506064.com/n/127140.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
AK801AK801
上一篇 2024-10-03 23:13
下一篇 2024-10-03 23:13

相关推荐

  • 如何查看Anaconda中Python路径

    对Anaconda中Python路径即conda环境的查看进行详细的阐述。 一、使用命令行查看 1、在Windows系统中,可以使用命令提示符(cmd)或者Anaconda Pro…

    编程 2025-04-29
  • Python周杰伦代码用法介绍

    本文将从多个方面对Python周杰伦代码进行详细的阐述。 一、代码介绍 from urllib.request import urlopen from bs4 import Bea…

    编程 2025-04-29
  • Python中引入上一级目录中函数

    Python中经常需要调用其他文件夹中的模块或函数,其中一个常见的操作是引入上一级目录中的函数。在此,我们将从多个角度详细解释如何在Python中引入上一级目录的函数。 一、加入环…

    编程 2025-04-29
  • Python列表中负数的个数

    Python列表是一个有序的集合,可以存储多个不同类型的元素。而负数是指小于0的整数。在Python列表中,我们想要找到负数的个数,可以通过以下几个方面进行实现。 一、使用循环遍历…

    编程 2025-04-29
  • Python计算阳历日期对应周几

    本文介绍如何通过Python计算任意阳历日期对应周几。 一、获取日期 获取日期可以通过Python内置的模块datetime实现,示例代码如下: from datetime imp…

    编程 2025-04-29
  • Python程序需要编译才能执行

    Python 被广泛应用于数据分析、人工智能、科学计算等领域,它的灵活性和简单易学的性质使得越来越多的人喜欢使用 Python 进行编程。然而,在 Python 中程序执行的方式不…

    编程 2025-04-29
  • Python清华镜像下载

    Python清华镜像是一个高质量的Python开发资源镜像站,提供了Python及其相关的开发工具、框架和文档的下载服务。本文将从以下几个方面对Python清华镜像下载进行详细的阐…

    编程 2025-04-29
  • 蝴蝶优化算法Python版

    蝴蝶优化算法是一种基于仿生学的优化算法,模仿自然界中的蝴蝶进行搜索。它可以应用于多个领域的优化问题,包括数学优化、工程问题、机器学习等。本文将从多个方面对蝴蝶优化算法Python版…

    编程 2025-04-29
  • Python字典去重复工具

    使用Python语言编写字典去重复工具,可帮助用户快速去重复。 一、字典去重复工具的需求 在使用Python编写程序时,我们经常需要处理数据文件,其中包含了大量的重复数据。为了方便…

    编程 2025-04-29
  • python强行终止程序快捷键

    本文将从多个方面对python强行终止程序快捷键进行详细阐述,并提供相应代码示例。 一、Ctrl+C快捷键 Ctrl+C快捷键是在终端中经常用来强行终止运行的程序。当你在终端中运行…

    编程 2025-04-29

发表回复

登录后才能评论