python中调用r(Python中调用_________来计算数的绝对值)

  • 1、Python调用R编程——rpy2
  • 2、求助,R语言在python中调用问题
  • 3、如何通过PypeR来实现在Python中调用R

在Python调用R,最常见的方式是使用rpy2模块。

The package is made of several sub-packages or modules:

Importing R packages is often the first step when running R code, and rpy2 is providing a function rpy2.robjects.packages.importr() that makes that step very similar to importing Python packages.

We mentioned earlier that rpy2 is running an embedded R. This is may be a little abstract, so there is an object rpy2.robjects.r to make it tangible.

The __getitem__() method of rpy2.robjects.r, gets the R object associated with a given symbol

The object r is also callable , and the string passed in a call is evaluated as R code.

An R object has a string representation that can be used directly into R code to be evaluated.

In R, data are mostly represented by vectors, even when looking like scalars. When looking closely at the R object pi used previously, we can observe that this is in fact a vector of length 1.

Creating R vectors can be achieved simply.

The easiest way to create such objects is to do it through R functions.

Calling R functions is disappointingly similar to calling Python functions.

By default, calling R functions return R objects.

Linear models

Creating an R vector or matrix, and filling its cells using Python code

This module should be the right pick for casual and general use. Its aim is to abstract some of the details and provide an intuitive interface to both Python and R programmers.

The instance can be seen as the entry point to an embedded R process. The elements that would be accessible from an equivalent R environment are accessible as attributes of the instance.

When safety matters most, we recommend using __getitem__() to get a given R object.

Storing the object in a python variable will protect it from garbage collection, even if deleted from the objects visible to an R user.

Just like it is the case with RPy-1.x, on-the-fly evaluation of R code contained in a string can be performed by calling the r instance.

The astute reader will quickly realize that R objects named by python variables can be plugged into code through their R representation.

R environments can be described to the Python user as an hybrid of a dictionary and a scope.

The first of all environments is called the Global Environment, that can also be referred to as the R workspace.

Assigning a value to a symbol in an environment has been made as simple as assigning a value to a key in a Python dictionary.

An environment is also iter-able, returning all the symbols (keys) it contains.

R functions exposed by rpy2’s high-level interface can be used:

This is all looking fine and simple until R arguments with names such as na.rm are encountered. By default, this is addressed by having a translation of ‘.’ (dot) in the R argument name into a ‘_’ in the Python argument name.

In Python one can write:

R is capable of introspection, and can return the arguments accepted by a function through the function formals().

The method Function.rcall() is an alternative way to call an underlying R function.

For tasks such as modelling and plotting, an R formula can be a terse, yet readable, way of expressing what is wanted.

The class robjects.Formula is representing an R formula.

Other options are:

This is achieved by the R functions library() and require() (attaching the namespace of the package to the R search path).

Beside functions and environments, most of the objects an R user is interacting with are vector-like. For example, this means that any scalar is in fact a vector of length one.

The class Vector has a constructor:

Creating vectors can be achieved either from R or from Python.

When the vectors are created from R, one should not worry much as they will be exposed as they should by rpy2.robjects.

When one wants to create a vector from Python, either the class Vector or the convenience classes IntVector, FloatVector, BoolVector, StrVector can be used.

Extracting, Python-style

The python __getitem__() method behaves like a Python user would expect it for a vector (and indexing starts at zero).

Extracting, R-style

Access to R-style extracting/subsetting is granted though the two delegators rx and rx2, representing the R functions [ and [[ respectively.

Assigning, Python-style

Since vectors are exposed as Python mutable sequences, the assignment works as for regular Python lists.

In R vectors can be named, that is elements of the vector have a name.

Assigning, R-style

The attributes rx and rx2 used previously can again be used:

For the sake of complete compatibility with R, arguments can be named (and passed as a dict or rpy2.rlike.container.TaggedList).

In S/Splus/R special NA values can be used in a data vector to indicate that fact, and rpy2.robjects makes aliases for those available as data objects NA_Logical, NA_Real, NA_Integer, NA_Character, NA_Complex .

To expose that to Python, a delegating attribute ro is provided for vector-like objects.

R vectors can have a name given to all or some of the elements. The property names can be used to get, or set, those names.

Array

In R, arrays are simply vectors with a dimension attribute. That fact was reflected in the class hierarchy with robjects.Array inheriting from robjects.Vector.

Matrix

A Matrix is a special case of Array. As with arrays, one must remember that this is just a vector with dimension attributes (number of rows, number of columns).

DataFrame

In rpy2.robjects, DataFrame represents the R class data.frame.

Creating a DataFrame can be done by:

The DataFrame constructor accepts either an rinterface.SexpVector (with typeof equal to VECSXP, that is, an R list) or any Python object implementing the method items() (for example dict or rpy2.rlike.container.OrdDict).

To create a DataFrame and be certain of the clumn order order, an ordered dictionary can be used:

Here again, Python’s __getitem__() will work as a Python programmer will expect it to:

The DataFrame is composed of columns, with each column being possibly of a different type:

The approach followed in rpy2 has 2 levels (rinterface and robjects), and conversion functions help moving between them.

R vectors are mapped to Python objects implementing the methods __getitem__() / __setitem__() in the sequence protocol so elements can be accessed easily.

R functions are mapped to Python objects implementing the __call__() so they can be called just as if they were functions.

R environments are mapped to Python objects implementing __getitem__() / __setitem__() in the mapping protocol so elements can be accessed similarly to in a Python dict.

In its high-level interface rpy2 is using a conversion system that has the task of convertion objects between the following 3 representations: – lower-level interface to R (rpy2.rinterface level), – higher-level interface to R (rpy2.robjects level) – other (no rpy2) representations

R vectors or arrays can be converted to numpy arrays using numpy.array() or numpy.asarray().

The activation (and deactivation) of the automatic conversion of numpy objects into rpy2 objects can be made with:

你使用的方法没有问题。r.mydose()调用后返回的东西不是报错,是因为mydose这个function返回值就是NULL,所以rpy就相应的返回了rpy2.rinterface.NULL,没有问题。以上是我的测试nofunc是一个什么也不做的functionhello是输出Hello world的function

如何通过PypeR来实现在Python中调用R

In [1]: # LOAD PYTHON PACKAGES

In [2]: import pandas as pd

In [3]: import pyper as pr

In [4]: # READ DATA

In [5]: data = pd.read_table(“/home/liuwensui/Documents/data/csdata.txt”, header = 0)

In [6]: # CREATE A R INSTANCE WITH PYPER

In [7]: r = pr.R(use_pandas = True)

In [8]: # PASS DATA FROM PYTHON TO R

In [9]: r.assign(“rdata”, data)

In [10]: # SHOW DATA SUMMARY

In [11]: print r(“summary(rdata)”)

try({summary(rdata)})

LEV_LT3 TAX_NDEB COLLAT1 SIZE1

Min. :0.00000 Min. : 0.0000 Min. :0.0000 Min. : 7.738

1st Qu.:0.00000 1st Qu.: 0.3494 1st Qu.:0.1241 1st Qu.:12.317

Median :0.00000 Median : 0.5666 Median :0.2876 Median :13.540

Mean :0.09083 Mean : 0.8245 Mean :0.3174 Mean :13.511

3rd Qu.:0.01169 3rd Qu.: 0.7891 3rd Qu.:0.4724 3rd Qu.:14.751

Max. :0.99837 Max. :102.1495 Max. :0.9953 Max. :18.587

PROF2 GROWTH2 AGE LIQ

Min. :0.0000158 Min. :-81.248 Min. : 6.00 Min. :0.00000

1st Qu.:0.0721233 1st Qu.: -3.563 1st Qu.: 11.00 1st Qu.:0.03483

Median :0.1203435 Median : 6.164 Median : 17.00 Median :0.10854

Mean :0.1445929 Mean : 13.620 Mean : 20.37 Mean :0.20281

3rd Qu.:0.1875148 3rd Qu.: 21.952 3rd Qu.: 25.00 3rd Qu.:0.29137

Max. :1.5902009 Max. :681.354 Max. :210.00 Max. :1.00018

IND2A IND3A IND4A IND5A

Min. :0.0000 Min. :0.0000 Min. :0.00000 Min. :0.00000

1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.00000

Median :1.0000 Median :0.0000 Median :0.00000 Median :0.00000

Mean :0.6116 Mean :0.1902 Mean :0.02692 Mean :0.09907

3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:0.00000

Max. :1.0000 Max. :1.0000 Max. :1.00000 Max. :1.00000

In [12]: # LOAD R PACKAGE

In [13]: r(“library(betareg)”)

Out[13]: ‘try({library(betareg)})\nLoading required package: Formula\n’

In [14]: # ESTIMATE A BETA REGRESSION

In [15]: r(“m – betareg(LEV_LT3 ~ SIZE1 + PROF2 + GROWTH2 + AGE + IND3A, data = rdata, subset = LEV_LT3 0)”)

Out[15]: ‘try({m – betareg(LEV_LT3 ~ SIZE1 + PROF2 + GROWTH2 + AGE + IND3A, data = rdata, subset = LEV_LT3 0)})\n’

In [16]: # OUTPUT MODEL SUMMARY

In [17]: print r(“summary(m)”)

try({summary(m)})

Call:

betareg(formula = LEV_LT3 ~ SIZE1 + PROF2 + GROWTH2 + AGE + IND3A, data = rdata,

subset = LEV_LT3 0)

Standardized weighted residuals 2:

Min 1Q Median 3Q Max

-7.2802 -0.5194 0.0777 0.6037 5.8777

Coefficients (mean model with logit link):

Estimate Std. Error z value Pr(|z|)

(Intercept) 1.229773 0.312990 3.929 8.53e-05 ***

SIZE1 -0.105009 0.021211 -4.951 7.39e-07 ***

PROF2 -2.414794 0.377271 -6.401 1.55e-10 ***

GROWTH2 0.003306 0.001043 3.169 0.00153 **

AGE -0.004999 0.001795 -2.786 0.00534 **

IND3A 0.688314 0.074069 9.293 2e-16 ***

Phi coefficients (precision model with identity link):

Estimate Std. Error z value Pr(|z|)

(phi) 3.9362 0.1528 25.77 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

Type of estimator: ML (maximum likelihood)

Log-likelihood: 266.7 on 7 Df

Pseudo R-squared: 0.1468

Number of iterations: 25 (BFGS) + 2 (Fisher scoring)

In [18]: # CALCULATE MODEL PREDICTION

In [19]: r(“beta_fit – predict(m, link = ‘response’)”)

Out[19]: “try({beta_fit – predict(m, link = ‘response’)})\n”

In [20]: # SHOW PREDICTION SUMMARY IN R

In [21]: print r(“summary(beta_fit)”)

try({summary(beta_fit)})

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.1634 0.3069 0.3465 0.3657 0.4007 0.6695

In [22]: # PASS DATA FROM R TO PYTHON

In [23]: pydata = pd.DataFrame(r.get(“beta_fit”), columns = [“y_hat”])

In [24]: # SHOW PREDICTION SUMMARY IN PYTHON

In [25]: pydata.y_hat.describe()

Out[25]:

count 1116.000000

mean 0.365675

std 0.089804

min 0.163388

25% 0.306897

50% 0.346483

75% 0.400656

max 0.669489

原创文章,作者:VAYEI,如若转载,请注明出处:https://www.506064.com/n/126598.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
VAYEIVAYEI
上一篇 2024-10-03 23:08
下一篇 2024-10-03 23:09

相关推荐

  • 如何查看Anaconda中Python路径

    对Anaconda中Python路径即conda环境的查看进行详细的阐述。 一、使用命令行查看 1、在Windows系统中,可以使用命令提示符(cmd)或者Anaconda Pro…

    编程 2025-04-29
  • Python周杰伦代码用法介绍

    本文将从多个方面对Python周杰伦代码进行详细的阐述。 一、代码介绍 from urllib.request import urlopen from bs4 import Bea…

    编程 2025-04-29
  • Python计算阳历日期对应周几

    本文介绍如何通过Python计算任意阳历日期对应周几。 一、获取日期 获取日期可以通过Python内置的模块datetime实现,示例代码如下: from datetime imp…

    编程 2025-04-29
  • Python列表中负数的个数

    Python列表是一个有序的集合,可以存储多个不同类型的元素。而负数是指小于0的整数。在Python列表中,我们想要找到负数的个数,可以通过以下几个方面进行实现。 一、使用循环遍历…

    编程 2025-04-29
  • Python中引入上一级目录中函数

    Python中经常需要调用其他文件夹中的模块或函数,其中一个常见的操作是引入上一级目录中的函数。在此,我们将从多个角度详细解释如何在Python中引入上一级目录的函数。 一、加入环…

    编程 2025-04-29
  • 蝴蝶优化算法Python版

    蝴蝶优化算法是一种基于仿生学的优化算法,模仿自然界中的蝴蝶进行搜索。它可以应用于多个领域的优化问题,包括数学优化、工程问题、机器学习等。本文将从多个方面对蝴蝶优化算法Python版…

    编程 2025-04-29
  • Python程序需要编译才能执行

    Python 被广泛应用于数据分析、人工智能、科学计算等领域,它的灵活性和简单易学的性质使得越来越多的人喜欢使用 Python 进行编程。然而,在 Python 中程序执行的方式不…

    编程 2025-04-29
  • Python字典去重复工具

    使用Python语言编写字典去重复工具,可帮助用户快速去重复。 一、字典去重复工具的需求 在使用Python编写程序时,我们经常需要处理数据文件,其中包含了大量的重复数据。为了方便…

    编程 2025-04-29
  • Python清华镜像下载

    Python清华镜像是一个高质量的Python开发资源镜像站,提供了Python及其相关的开发工具、框架和文档的下载服务。本文将从以下几个方面对Python清华镜像下载进行详细的阐…

    编程 2025-04-29
  • python强行终止程序快捷键

    本文将从多个方面对python强行终止程序快捷键进行详细阐述,并提供相应代码示例。 一、Ctrl+C快捷键 Ctrl+C快捷键是在终端中经常用来强行终止运行的程序。当你在终端中运行…

    编程 2025-04-29

发表回复

登录后才能评论